AlternatingGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : AlternatingGroup

GroupTheory

  

AlternatingGroup

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

AlternatingGroup( n, formopt )

Alt( n, formopt )

Parameters

n

-

algebraic; understood to be a positive integer

formopt

-

(optional) equation of the form form = F, where F is either "permgroup" (the default) or "fpgroup"

Description

• 

The alternating group An on n elements is the set of all even permutations of1&comma;2&comma;&comma;n for a positive integer n. The order of An is equal to n!2, for 1<n. The alternating group of degree n is simple if n is at least 5.

• 

The AlternatingGroup( n ) command returns an alternating permutation group of degree n.  You can also use Alt( n ) as an abbreviation of AlternatingGroup( n ).

• 

The form = F option controls the form of the group returned. By default, a permutation group is returned; this is equivalent to passing the option form = "permgroup". A finitely presented group can be obtained by passing the option form = "fpgroup".

• 

If the argument n is not an integer constant, then a symbolic group is returned. In this case, the form option is ignored.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory&colon;

GAlternatingGroup7

GA7

(1)

GroupOrderG

2520

(2)

IsTransitiveG

true

(3)

IsPrimitiveG

true

(4)

IsSimpleG

true

(5)

GAlt4

GA4

(6)

IsSimpleG

false

(7)

DrawSubgroupLatticeG

GAlt5&comma;form=fpgroup

Gs&comma;ts3&comma;t3&comma;ts-1tsts-1ts&comma;ststststst

(8)

If the argument to the constructor is not a literal integer, then a symbolic group is returned.

GAlt3n+7

GA3n+7

(9)

IsSimpleGassumingn::posint

true

(10)

GroupOrderG

3n+7!2

(11)

Compatibility

• 

The GroupTheory[AlternatingGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory[DrawSubgroupLattice]

GroupTheory[GroupOrder]

GroupTheory[IsPrimitive]

GroupTheory[IsSimple]

GroupTheory[IsTransitive]

GroupTheory[SymmetricGroup]