SylowBasis - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

SylowBasis

  

construct a Sylow basis for a finite soluble group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SylowBasis( G )

Parameters

G

-

a soluble permutation group

Description

• 

Let  be a finite soluble group.  A Sylow basis for  is a collection  of Sylow subgroups of , one for each prime divisor of the order of , such that , for each pair  of Sylow subgroups in .

• 

The existence of a Sylow basis for  is equivalent to the solubility of .

• 

The SylowBasis( G ) command constructs a Sylow basis for the soluble group G. If the group G is not soluble, then an exception is raised. The group G must be an instance of a permutation group.

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Error, (in GroupTheory:-SylowBasis) group must be soluble

Error, (in GroupTheory:-SylowBasis) group must be soluble

Compatibility

• 

The GroupTheory[SylowBasis] command was introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

combinat[choose]

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[DihedralGroup]

GroupTheory[FrobeniusGroup]

GroupTheory[FrobeniusProduct]

GroupTheory[IsSoluble]

GroupTheory[PSL]

GroupTheory[SylowSubgroup]

GroupTheory[SymmetricGroup]

 


Download Help Document