SpecialUnitaryGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : SpecialUnitaryGroup

GroupTheory

  

SpecialUnitaryGroup

  

construct a permutation group isomorphic to a special unitary group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SpecialUnitaryGroup(n, q)

SU(n, q)

Parameters

n

-

a positive integer

q

-

power of a prime number

Description

• 

The special unitary group SUn,q  is the set of all n x n matrices over the field with q2 elements whose determinant is 1 and respect a fixed nondegenerate sesquilinear form.

• 

The SpecialUnitaryGroup( n, q ) command returns a permutation group isomorphic to the special unitary group  SUn,q  .

• 

Note that for n = 2 the groups SUn,q  and SLn,q  are isomorphic so the latter is returned in this case.

• 

If either or both of the parameters n and q is non-numeric, then a symbolic group representing the indicated special unitary group is returned.

• 

The standard notation SU(n, q) is also available as a synonym.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

Two-dimensional special unitary groups are identical to the corresponding special linear group.

SU2,4

SL2,4

(1)

GSpecialUnitaryGroup3,2

GSU3,2

(2)

GeneratorsG

2,3,5,94,7,13,226,11,19,268,15,17,2010,18,25,2412,21,27,23,1,2,4,8,16,24,21,7,14,11,20,273,6,12,5,10,9,17,18,19,25,22,2613,23,15

(3)

IsTransitiveG

true

(4)

GroupOrderSU4,2

25920

(5)

GSU2,23

GSL2,23

(6)

ClassNumberG

27

(7)

IsSimpleG

false

(8)

GroupOrderCentreG

2

(9)

GroupOrderSU3,q

q3q21q3+1

(10)

MinPermRepDegreeSU3,5

378

(11)

Compatibility

• 

The GroupTheory[SpecialUnitaryGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

• 

The GroupTheory[SpecialUnitaryGroup] command was updated in Maple 2020.

See Also

GroupTheory

GroupTheory[ClassNumber]

GroupTheory[Generators]

GroupTheory[GroupOrder]

GroupTheory[IsTransitive]

GroupTheory[ProjectiveSpecialUnitaryGroup]

GroupTheory[SpecialLinearGroup]