CycleIndexPolynomial - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : CycleIndexPolynomial

GroupTheory

  

CycleIndexPolynomial

  

return the cycle index polynomial of a permutation group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

CycleIndexPolynomial( G, vars )

Parameters

G

-

a permutation group

vars

-

list of names

Description

• 

The cycle index polynomial of a permutation group G encodes, in concise form, the cycle structure of the elements of G.  It is the "average" of the cycle index polynomials of the elements of G.

• 

For a permutation p of degree d, the cycle index polynomial in the variables x1, x2, ..., xd is the monomial x1c1x2c2...xdcd, where, for each i, ci is the number of cycles of length i in p.

• 

The CycleIndexPolynomial( G, vars ) command computes the cycle index polynomial of a permutation group G with respect to the variables in the list vars of names.

Examples

withGroupTheory:

GGroupPerm1,2,Perm2,3,4

G1,2,2,3,4

(1)

CycleIndexPolynomialG,a,b,c,d

124a4+14a2b+13ac+18b2+14d

(2)

CycleIndexPolynomialCyclicGroup10,x1..10

x11010+x2510+2x525+2x105

(3)

CycleIndexPolynomialDihedralGroup7,x1..7

114x17+12x1x23+37x7

(4)

GDihedralGroup7

GD7

(5)

EopElementsG

E1,52,46,7,1,6,4,2,7,5,3,1,7,6,5,4,3,2,1,72,63,5,2,73,64,5,1,23,74,6,1,3,5,7,2,4,6,1,34,75,6,1,4,7,3,6,2,5,1,42,35,7,1,5,2,6,3,7,4,1,2,3,4,5,6,7,1,62,53,4,

(6)

CTsortmapPermCycleType,E

CT,7,7,7,7,7,7,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

(7)

If the vertices of a hexagon are colored with three different colors, then the number of distinct colored hexagons can be calculated by evaluating the cycle index polynomial of the dihedral group of degree 6 (the group of symmetries of a hexagon) with each indeterminate equal to 3.

pCycleIndexPolynomialDihedralGroup6,x1..6

p112x16+14x12x22+13x23+16x32+16x6

(8)

evalp,x1=3,x2=3,x3=3,x4=3,x5=3,x6=3

92

(9)

As a shortcut, you can use the following calling sequence.

CycleIndexPolynomialDihedralGroup6,`$`3,6

92

(10)

Compatibility

• 

The GroupTheory[CycleIndexPolynomial] command was introduced in Maple 18.

• 

For more information on Maple 18 changes, see Updates in Maple 18.

See Also

GroupTheory

GroupTheory[CyclicGroup]

GroupTheory[DihedralGroup]

GroupTheory[Elements]

GroupTheory[PermCycleType]

map

op

Perm

sort

with

||