Groebner
Homogenize
homogenize polynomials and ideals
Calling Sequence
Parameters
Description
Examples
References
Homogenize(f, h, vars)
f
-
polynomial or list or set of polynomials, or a PolynomialIdeal
h
variable
vars
(optional) list or set of variables
The Homogenize command homogenizes polynomials and polynomial ideals. If f is a polynomial, then a minimal power of h is added to each term so that all resulting terms have the same total degree. The variables of f can be specified explicitly by an optional third argument vars. Homogenize also maps onto lists and sets of polynomials automatically.
If the first argument f is a PolynomialIdeal, then Homogenize constructs the ideal generated by all homogenizations of polynomials in f. This is done by homogenizing a total degree Groebner basis for f.
It does not suffice to simply homogenize the generators of an ideal. In the example below is in the ideal <F>, and since the polynomial is homogeneous it should be in the homogenization of <F> as well.
Froberg, R. An Introduction to Grobner Bases. West Sussex: Wiley & Sons, 1997.
See Also
degree
Groebner[Basis]
PolynomialIdeals
Download Help Document