Parameters

 t - quadratic expression in one variable p1 - a GridPoint object or list/rtable representing the quadratic function's vertex p2 - a GridPoint object or list/rtable representing a point on the quadratic function that is not the vertex q1, q2, q3 - GridPoint objects or lists/rtables representing points on the quadratic function

Options

 • domain : a RealRange expression specifying the region over which the quadratic function is defined
 • variable : name used in generated expression if the second calling sequence is used

Description

 • The QuadraticFunction constructor generates and returns an object representing a quadratic function.

Examples

 > $\mathrm{with}\left(\mathrm{Grading}\right)$
 $\left[{\mathrm{AbsoluteValueFunction}}{,}{\mathrm{Draw}}{,}{\mathrm{ExponentialFunction}}{,}{\mathrm{GetData}}{,}{\mathrm{GetDomain}}{,}{\mathrm{GetExpression}}{,}{\mathrm{GradePlot}}{,}{\mathrm{GridPoint}}{,}{\mathrm{Inequalities}}{,}{\mathrm{IsQuadraticFormula}}{,}{\mathrm{LinearFunction}}{,}{\mathrm{LogarithmicFunction}}{,}{\mathrm{QuadraticFunction}}{,}{\mathrm{Quiz}}{,}{\mathrm{Segment}}{,}{\mathrm{SolveFeedback}}{,}{\mathrm{SolvePractice}}\right]$ (1)
 > $\mathrm{QuadraticFunction}\left({x}^{2}-4x+4\right)$
 ${\mathrm{<< QuadraticFunction: x^2-4*x+4>>}}$ (2)
 > $\mathrm{QuadraticFunction}\left(\left[2,0\right],\left[0,4\right]\right)$
 ${\mathrm{<< QuadraticFunction: v^2-4*v+4>>}}$ (3)
 > $P≔\mathrm{QuadraticFunction}\left(\left[2,0\right],\left[0,4\right],'\mathrm{variable}'='s'\right)$
 ${P}{≔}{\mathrm{<< QuadraticFunction: s^2-4*s+4>>}}$ (4)
 > $\mathrm{GetExpression}\left(P\right)$
 ${{s}}^{{2}}{-}{4}{}{s}{+}{4}{,}{s}$ (5)
 > $\mathrm{QuadraticFunction}\left(\left[-1,3\right],\left[2,0\right],\left[0,4\right]\right)$
 ${\mathrm{<< QuadraticFunction: -v^2+4>>}}$ (6)

Compatibility