calling_sequence - Maple Help

# Online Help

###### All Products    Maple    MapleSim

FunctionAdvisor/calling_sequence

return the calling sequence of a given mathematical function

 Calling Sequence FunctionAdvisor(calling_sequence, math_function, all)

Parameters

 calling_sequence - name where calling_sequence is one of the following literal names 'calling_sequence', 'form', or 'syntax' math_function - Maple name of mathematical function all - (optional) literal name; 'all'; request all calling sequences of math_function when it accepts more than one

Description

 • The FunctionAdvisor(calling_sequence, math_function) returns the calling sequence of the function.
 Note that syntax and form are synonyms of calling_sequence. For more information, see FunctionAdvisor/synonyms.
 • If the math_function accepts more than one calling sequence, for example, Ei, by default, the FunctionAdvisor(calling_sequence, math_function) command returns the calling sequence with the most arguments. To obtain all the calling sequences for the math_function, specify the optional argument 'all'.

Examples

 > $\mathrm{FunctionAdvisor}\left(\mathrm{calling_sequence},\mathrm{sin}\right)$
 ${\mathrm{sin}}{}\left({z}\right)$ (1)
 > $\mathrm{FunctionAdvisor}\left(\mathrm{syntax},\mathrm{pochhammer}\right)$
 ${\mathrm{pochhammer}}{}\left({z}{,}{n}\right)$ (2)
 > $\mathrm{FunctionAdvisor}\left(\mathrm{form},\mathrm{WeierstrassP}\right)$
 ${\mathrm{WeierstrassP}}{}\left({z}{,}\mathrm{g__2}{,}\mathrm{g__3}\right)$ (3)

The variables used by the FunctionAdvisor command to create the calling sequence are local variables. To make the FunctionAdvisor command return results using global variables, pass them as an extra argument in the form of a list.

 > $\mathrm{FunctionAdvisor}\left(\mathrm{calling_sequence},\mathrm{LegendreP}\right)$
 ${\mathrm{LegendreP}}{}\left({a}{,}{b}{,}{z}\right)$ (4)
 > $\mathrm{has}\left(,\left[a,b,z\right]\right)$
 ${\mathrm{false}}$ (5)
 > $\mathrm{FunctionAdvisor}\left(\mathrm{calling_sequence},\mathrm{LegendreP},\left[A,z\right]\right)$
 ${\mathrm{LegendreP}}{}\left({A}{,}{b}{,}{z}\right)$ (6)
 > $\mathrm{has}\left(,A\right),\mathrm{has}\left(,b\right),\mathrm{has}\left(,z\right)$
 ${\mathrm{true}}{,}{\mathrm{false}}{,}{\mathrm{true}}$ (7)

The following illustrate the case where the mathematical function accepts more than one calling sequence.

 > $\mathrm{FunctionAdvisor}\left(\mathrm{calling_sequence},\mathrm{arctan}\right)$
 ${\mathrm{arctan}}{}\left({y}{,}{x}\right)$ (8)
 > $\mathrm{FunctionAdvisor}\left(\mathrm{calling_sequence},\mathrm{arctan},\mathrm{all}\right)$
 ${\mathrm{arctan}}{}\left({z}\right){,}{\mathrm{arctan}}{}\left({y}{,}{x}\right)$ (9)
 > $\mathrm{FunctionAdvisor}\left(\mathrm{calling_sequence},\mathrm{LegendreP},\mathrm{all}\right)$
 ${\mathrm{LegendreP}}{}\left({a}{,}{z}\right){,}{\mathrm{LegendreP}}{}\left({a}{,}{b}{,}{z}\right)$ (10)
 > $\mathrm{FunctionAdvisor}\left(\mathrm{calling_sequence},\mathrm{\zeta },\mathrm{all}\right)$
 ${\mathrm{\zeta }}{}\left({s}\right){,}{\mathrm{\zeta }}{}\left({n}{,}{s}\right){,}{\mathrm{\zeta }}{}\left({n}{,}{s}{,}{a}\right)$ (11)

 See Also