|
Calling Sequence
|
|
SVJJProcess(, , r, theta, kappa, sigma, rho, lambda, alpha, beta, delta, t)
|
|
Parameters
|
|
|
-
|
real constant; initial value of the return process
|
|
-
|
non-negative constant; initial value of the variance
|
r
|
-
|
real constant; risk-neutral drift
|
theta
|
-
|
non-negative constant, algebraic expression or procedure; long-run mean of the volatility
|
kappa
|
-
|
positive constant; speed of mean reversion
|
sigma
|
-
|
real constant; volatility of the variance process
|
rho
|
-
|
non-negative constant; instantaneous correlation between the return process and the variance process
|
lambda
|
-
|
non-negative constant; jump intensity
|
alpha
|
-
|
non-negative constant; mean relative jump size
|
beta
|
-
|
real constant; standard deviation of the relative jump size
|
delta
|
-
|
real constant; jump size of the variance process
|
t
|
-
|
name; time variable
|
|
|
|
|
Description
|
|
•
|
The SVJJProcess command creates a new stochastic volatility process with jumps (SVJJ). This is a process governed by the stochastic differential equation (SDE)
|
–
|
is the risk-neutral drift,
|
–
|
is the long-run mean of the variance process,
|
–
|
is the speed of mean reversion of the variance process,
|
–
|
is the volatility of the variance process,
|
–
|
is the volatility jump size,
|
–
|
is the two-dimensional Wiener process with instantaneous correlation ,
|
–
|
is a Poisson process, independent of , with constant intensity ,
|
–
|
is a lognormal random variable with mean and variance .
|
•
|
The parameters , , and are related by the following equation
|
•
|
This process was introduced by A. Matytsin. Special cases of this process include
|
|
Bates SVJ process
|
|
|
|
Heston SV process
|
|
|
|
|
|
|
Examples
|
|
First construct an SVJJ process with variable parameters. You will assign numeric values to these parameters later.
Generate 10 replications of the sample path and plot sample paths for the state variable and the variance process.
Consider different parameters.
Generate 10 replications of the sample path of the new process and plot sample paths for the state variable and the variance process.
|
|
References
|
|
|
Bates, D., Jumps and stochastic volatility: the exchange rate processes implicit in Deutsche Mark options, Review of Financial Studies, Volume 9, 69-107, 1996.
|
|
Duffie, D., Pan, J., and Singleton, K.J. Transform analysis and asset pricing for affine jump-diffusions. Econometrica, Volume 68, 1343-1376, 2000.
|
|
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
|
|
Matytsin, A. Modelling volatility and volatility derivatives, Columbia Practitioners Conference on the Mathematics of Finance, 1999.
|
|
|
Compatibility
|
|
•
|
The Finance[SVJJProcess] command was introduced in Maple 15.
|
|
|
|