HorizontalExteriorDerivative - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : JetCalculus : HorizontalExteriorDerivative

JetCalculus[HorizontalExteriorDerivative] - calculate the horizontal exterior derivative of a bi-form on a jet space

Calling Sequences

     HorizontalExteriorDerivative(ω)

Parameters

     omega     - a differential bi-form on the jet space of a fiber bundle

 

Description

Examples

Description

• 

Let π:EM be a fiber bundle, with base dimension n and fiber dimension m and let π∞:J∞E  M be the infinite jet bundle of E. Let (xi, uα, uiα, uijα, ..., uij  kα, ....) be a local system of jet coordinates. Every differential form on JE can be expressed locally in terms of a sum of wedge products of 1-forms dxi on M and contact 1-forms,

 Θα = duαuℓαdxℓ,     Θiα = duiαuiℓαdxℓ ,  ....  ,  Θijkα = duijkαuijkℓα dxℓ , .... .

Note that exterior derivatives of the contact 1-forms are

dΘα = dxℓ  Θℓ α,     dΘiα = dx  Θiℓ α,  .... ,  dΘijkα = dx  Θijkℓ α.

A differential pform ω  ΩpJ∞ is called a bi-form of degree r,s if  it is a sum of wedge products of  r 1-forms on M  and s contact 1-forms, that is,

ω = Ai1i2ir a1 as               dxi1dxi2   dxir   Ca1Ca2  Cas,   where each Cak is a contact 1-form.

The space of all p-forms then decomposes as a direct sum of bi-forms

ΩpJ∞  = r+s =p Ωr,sJ∞E

The above formulas for the exterior derivative of the contact forms shows that d:Ωr,sJE Ωr+1,sJE Ωr,s+1JEand therefore d  = dH  + dV,   where

  dH :Ωr,sJE Ωr+1,sJE  and   dV :Ωr,sJE Ωr,s+1JE.

The differential operator dH is called the horizontal exterior derivative and the differential operator dV is called the vertical exterior derivative. One has that

dHdH =0,  dHdV + dVdH =0,  and  dVdV =0.

The coordinate formulas for the horizontal exterior derivative are

dHxi = dxi ,      dHuij  kα = uij  kℓα dxℓ,       dHdxi = 0,       dHΘijkα = dxℓ   Θijkℓα.

The coordinate formulas for the vertical exterior derivative are

dVxi =0,    dVuij  kα = Θij  kα ,      dVdxi = 0,     dVΘijkα = 0.

• 

The command HorizontalExteriorDerivative(ω) returns the horizontal exterior derivative dHω. The horizontal degree of ω must be less than the dimension of the base manifold M. The vertical exterior derivative is computed with the command VerticalExteriorDerivative.

• 

The command HorizontalExteriorDerivative is part of the DifferentialGeometry:-JetCalculus package.  It can be used in the form HorizontalExteriorDerivative(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-HorizontalExteriorDerivative(...).

Examples

withDifferentialGeometry:withJetCalculus:

 

Example 1.

Create the jet space J2E for the bundle E with coordinates x, y, u, v  x, y.

DGsetupx,y,u,v,E,2:

 

Calculate the horizontal exterior derivative of a function.

E > 

Ffx,y,u,u1,u2:

E > 

PDEtoolsdeclareF,quiet:

E > 

HorizontalExteriorDerivativeF

fuu1+fu1u1,1+fu2u1,2+fxDx+fuu2+fu1u1,2+fu2u2,2+fyDy

(2.1)

 

Calculate the horizontal exterior derivative of a type (1, 0) bi-form.

E > 

ω1Ax,y,u,u1,u2Dx+Bx,y,u,u1,u2Dy

ω1:=Ax,y,u[],u1,u2Dx+Bx,y,u[],u1,u2Dy

(2.2)
E > 

HorizontalExteriorDerivativeω1

Auu2+Au1u1,2+Au2u2,2Buu1Bu1u1,1Bu2u1,2+AyBxDxDy

(2.3)

 

Calculate the horizontal exterior derivative of a type (0, 2) bi-form.

E > 

ω2Cu2&wedgeCv2

ω2:=Cu2Cv2

(2.4)
E > 

HorizontalExteriorDerivativeω2

DxCu2Cv1,2DxCv2Cu1,2+DyCu2Cv2,2DyCv2Cu2,2

(2.5)

See Also

DifferentialGeometry

JetCalculus

ExteriorDerivative

VerticalExteriorDerivative

HorizontalHomotopy

VerticalHomotopy