TanakaProlongation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim

LieAlgebras[TanakaProlongation] - calculate the Tanaka prolongation, to a specified order, of a graded nilpotent Lie algebra

Calling Sequences

     TanakaProlongation(alg, k,pralg)


   alg    - a name or string, the name of an initialized graded, nilpotent Lie algebra 𝔤

   k      - a positive integer, the number of times the Lie algebra 𝔤 is to be prolonged

   pralg  -  an unassigned name or string, the name to be given to the Tanaka prolongation of 𝔤



See Also



Let 𝔪 be a negatively graded Lie algebra, 𝔪 = 𝔤μ  𝔤μ+1 𝔤2𝔤1. The Tanaka prolongation of 𝔪 is a graded (possibly infinite dimensional) Lie algebra

𝔤𝔪 = p μp =∞𝔤p ,   with  𝔤p , 𝔤q  𝔤p+q .

The Tanaka prolongation is computed inductively in terms of the partial prolongations

𝔤{ℓ)𝔪=p μp =ℓ𝔤p 𝔪 = 𝔤p 𝔪 𝔤1𝔪 𝔤0𝔪𝔤1𝔪  𝔤ℓ𝔪.

Here &gfr;&ell; 𝔪 = 𝔤 for &ell; <0 and 𝔤 &comma; for &ell;0, is defined as the derivations of the Lie algebra &mfr; which shift the grading degree by &ell;&period; In particular, the weight 0 component &gfr;0 is precisely the gradation preserving derivations (or infinitesimal automorphisms) of &mfr;. If &gfr;q&plus;1 &equals; 0 for some q0&comma; then all subsequent components 𝔤p &equals;0 for p &gt;q and the process of Tanaka prolongation is said to terminate at order q.


 The command TanakaProlongation requires that the basis e1&comma; e2&comma; ..&period;&comma; en for the Lie algebra &mfr; be adapted to the grading in the sense that

 𝔤p&equals;e1&comma; ..&period;&comma; enp&comma;   𝔤p&plus;1&equals;enp&plus;1 &comma; ..&period; &comma; enp1&comma;   ..&period;  &comma; &gfr;1&equals;en2 &comma;..&period;&comma; en&period;


The command TanakaProlongation(alg, k, pralg) returns the structure equations for the &ell;-th prolongation

&gfr;&lcub;&ell;&rpar;&mfr; &equals; &gfr;p  &gfr;p&plus;1  &gfr;2&gfr;1 &gfr;0&gfr;1  &gfr;&ell;

where &ell; = min&lpar;k&comma; q&rpar; and where q is the smallest non-negative integer such that &gfr;q&plus;1 &equals; 0.


With infolevel[TanakaProlongation] = 2, information on the sequential partial prolongations of the algebra is displayed.


We note 3 important properties of this prolongation procedure. First, let &Dscr; be a distribution on a manifold M  about each point of M, 𝒟 can be described as the span of a finite number of vector fields. We recall that the infinitesimal symmetry algebra sym&Dscr;of 𝒟 is the Lie algebra of vector fields Z such that Z&comma; &Dscr; &Dscr;.


 Let G be the nilpotent Lie group with Lie algebra &mfr;&period; Let X1&comma; X2&comma; ..&period; &comma; Xn be the left (or right) invariant vector fields on G. The structure equations for these vector fields coincide with the structure equations for the basis e1&comma; e2&comma; ..&period;&comma; en for the Lie algebra &mfr; . Because the algebra &mfr; is a nilpotent algebra, the Lie group G and the vector fields X1&comma; X2&comma; ..&period;&comma; Xn can be explicitly constructed using the LieGroup and InvariantGeometricObjectFields in the GroupActions package. Set &Dscr;&equals;Xn2 &comma; e2&comma; ..&period;&comma; Xn &period; This is the distribution corresponding to the 𝔤1 component of 𝔪. This distribution has 2 remarkable properties: (1) its symbol algebra &sigma;&Dscr; coincides with &mfr;&period; and (2) the symmetry algebra sym&Dscr; is isomorphic, as an abstract Lie algebra, to the Tanaka prolongation 𝔤𝔪.


There is an important criterion which implies that the prolongation 𝔤𝔪 is infinite dimensional. Calculate the 0-th order prolongation

𝔤&lcub;0&rpar;𝔪 &equals; 𝔤p  &gfr;p&plus;1  𝔤2𝔤1 𝔤0 &equals; 𝔪  𝔤0.

 Let &Ascr; be the linear span of the adjoint matrices adx for x  &gfr;0, restricted to 𝔪. If &Ascr; contains a rank 1 matrix then the Tanaka prolongation is infinite. This test can be implemented with the command Rank1Elements.


Let &gfr;ss be a semi-simple Lie algebra with roots &Delta; and positive roots &Delta;&plus;. For the sake of simplicity, let us assume that &gfr;ss is a split real form so that the roots are all real vectors and the corresponding root space decomposition is real. Then every subset of &Delta;&plus;defines a (symmetric) grading of 𝔤ss&comma; say

&gfr;ss &equals; p&equals; &mu;p &equals;&mu;𝔤ss&comma;p&equals; 𝔤ss&comma;&mu;  𝔤ss&comma;1𝔤ss&comma;0&gfr;ss&comma;1  &gfr;ss&comma;&mu;    (*)


These gradations can be constructed with the GradeSemiSimpleLieAlgebra command. Let &mfr; &equals; &gfr;ss&comma;μ  𝔤ss&comma;1 be the negatively graded part of this decomposition of 𝔤ss&period; Then, with the exception of a few well-noted cases, the Tanaka prolongation of &mfr; reproduces the semi-simple Lie algebra 𝔤ss, that is, 𝔤ss&equals;𝔤&lcub;&mu;&rpar;𝔪 and 𝔤ss&comma;p&equals; &gfr;p&mfr;.


An excellent reference on the Tanaka prolongation of a Lie algebra is K. Yamaguchi, Differential Systems associated with Simple Graded Lie Algebras, Advanced Studies in Pure Mathematics, 22, 413-294 (1993).


with(DifferentialGeometry): with(LieAlgebras):

interface(rtablesize = 15):


Example 1.

Define a 5-dimensional graded nilpotent Lie algebra &gfr;  = alg1 with grading &gfr; &equals;&gfr;3 &gfr;2  𝔤1 and dim 𝔤3&equals;2&comma; dim 𝔤2&equals; 1&comma; dim 𝔤1&equals; 2. The keyword argument grading = [-3,-3,-2,-1,-1] is used to specify the grading.


Here are the structure equations for this Lie algebra.

StrEq := [[x3, x4] = -x1, [x3, x5] = -x2, [x4, x5] = x3], [x1, x2, x3, x4 ,x5];



LD := LieAlgebraData(StrEq, alg1, grading = [-3, -3, -2, -1, -1]):


Lie algebra: alg1




Calculate the Tanaka prolongation for alg1. With infolevel[TanakaProlongation] = 2, information on the sequential partial prolongations is displayed.

alg1 > 

infolevel[TanakaProlongation] := 2:

alg1 > 

prLD := TanakaProlongation(alg1, 5, pralg1):


   [[e1, e2], [e3], [e4, e5]]
   [-3, -2, -1]
   [[e1, e2], [e3], [e4, e5], [e6, e7, e8, e9]]
   [-3, -2, -1, 0]

   [[e1, e2], [e3], [e4, e5], [e6, e7, e8, e9], [e10, e11]]
   [-3, -2, -1, 0, 1]
   [[e1, e2], [e3], [e4, e5], [e6, e7, e8, e9], [e10, e11], [e12]]
   [-3, -2, -1, 0, 1, 2]

   [[e1, e2], [e3], [e4, e5], [e6, e7, e8, e9], [e10, e11], [e12], [e13, e14]]
   [-3, -2, -1, 0, 1, 2, 3]


The first 3 lines produced by the infolevel command display the gradation of the original algebra (the first argument in the calling sequence). We see from the next 3 lines that the 0-th order prolongation is a 9 dimensional Lie algebra and that the vectors e6&comma; e7&comma; e8&comma; e9 define the weight 0 vectors. The next 3 lines describe the 1st prolongation and so on. Finally we asked for the 5th prolongation of the algebra (with the second argument in the calling sequence set to 5) but we see that the Tanaka prolongation terminated at order 3. Thus the Tanaka prolongation of the nilpotent algebra alg1 is 14-dimensional.


Now initialize the prolonged algebra.

alg1 > 


Lie algebra: pralg1



We can use the command DGinfo to display the grading of this algebra and the Query command to verify it is a valid gradation.

pralg1 > 

G := Tools:-DGinfo( "table", "Grading");


pralg1 > 

Query(G, "Gradation");




This prolongation algebra is semi-simple and, indeed, one can use the commands CartanSubalgebra, RootSpaceDecomposition, PositiveRoots, SimpleRoots, CartanMatrix, CartanMatrixToStandardForm to identify this Lie algebra as the split real form of the exceptional Lie algebra g2.


Before continuing to the next example, reset the infolevel.

newalg > 

infolevel[TanakaProlongation] := 0:


Example 2.

We use the Lie algebra from Example 1 to show that the Tanaka prolongations can be computed one order at a time.


Calculate the prolongation of alg1 to order 1 and initialize.

alg1 > 

LD2a := TanakaProlongation(alg1, 2, P1);


alg1 > 


Lie algebra: P1



At this point the prolongation has dimension 11. To prolong further, it is not necessary to begin the calculation anew. Instead one can continue the prolongation using P1.

pr0 > 

LD2b := TanakaProlongation(P1, 4, P2);


P1 > 


Lie algebra: P2



We check that the two Tanaka prolongations -- pralg1 (which was calculated all in one go) and P2 (which was calculated in two steps) coincide. We do this by showing that the identity matrix defines a Lie algebra homomorphism.

pr3 > 

phi := Transformation(pralg1, P2, LinearAlgebra:-IdentityMatrix(14));


pr3 > 





Example 3.

In this example we define a gradation of the 15-dimensional Lie algebra sl4&period; We calculate the Tanaka prolongation of the negatively graded part and show that the prolongation is isomorphic to sl4&period; The command SimpleLieAlgebraData is used to retrieve the structure equations for sl4&period; 

P2 > 

LD3a := SimpleLieAlgebraData("sl(4)", sl4a):

P2 > 


Lie algebra: sl4a



Here is the grading we shall use ( It was constructed with the commands GradeSemiSimpleLieAlgebra and SimpleLieAlgebraProperties).

sl4 > 

G := table([0 = [e1, e2, e3], 1 = [e4, e8, e12], 2 = [e5, e9], 3 = [e6], -3 = [e13], -2 = [e10, e14], -1 = [e7, e11, e15]]);




Here is the Lie algebra sl4a but now in the basis adapted to this grading.

sl4 > 

LD3b := LieAlgebraData(G, sl4);


sl4 > 


Lie algebra: sl4

sl4 > 

Tools:-DGinfo(sl4, "Grading");




Now we calculate the structure equations for the negatively graded part. We initialize this nilpotent graded Lie algebra with the name M.

sl4 > 

LD3b := LieAlgebraData([e1, e2, e3, e4, e5, e6], M, grading = [-3, -2, -2, -1, -1, -1]);


sl4 > 


Lie algebra: M



Calculate the prolongation of M and initialize the result.

M > 

LD3c := TanakaProlongation(M, 4, prM);


M > 


Lie algebra: prM



We see that the prM is a 15 dimensional Lie algebra with the same grading as the one assigned to sl4.

sl4 > 

Tools:-DGinfo(prM, "Grading");




To complete this example we explicitly construct a Lie algebra isomorphism between sl4 and prM. The following matrix defines the most general Lie transformation between these two Lie algebras which preserves the grading.

M > 

A := LinearAlgebra:-DiagonalMatrix([ a1, Matrix([[a2, a3], [a4, a5]]), Matrix([[a6, a7, a8], [a9, a10, a11], [a12, a13,a14]]), Matrix([[a15, a16, a17], [a18, a19, a20], [a21, a22,a23]]), Matrix([[a24,a25, a26], [a27, a28, a29], [a30, a31,a32]]), Matrix([[a33, a34], [a35, a36]]), a37]);




We find the parameters for which this matrix defines a homomorphism.

prM > 

TF, EQ, Soln, B := Query(sl4, prM, A, {seq(a||i, i = 1..37)}, "Homomorphism"):


One choice is:

prM > 





We have illustrated one of the remarkable properties of the Tanaka prolongation procedure, namely, that the prolongation of the negatively graded part &mfr; of a simple Lie algebra &gfr;ss is the simple Lie algebra &gfr;ss .

Example 4.

In this example we consider a negatively graded Lie algebra whose prolongation is infinite.


alg3 > 

LD4 := LieAlgebraData([ [x2, x5] = -x1, [x3, x5] = -x2, [x4, x5] = -x3, [x5, x6] = x4 ], [x1, x2, x3, x4, x5, x6], alg4, grading = [-3, -3, -2, -1, -1, -1]);


alg3 > 


Lie algebra: alg4



Calculate the first 7 prolongations of this Lie algebra.

alg4 > 

T0 := TanakaProlongation(alg4, 1, pr1alg4):

alg3 > 

T1 := TanakaProlongation(alg4, 2, pr2alg4):

alg4 > 

T2 := TanakaProlongation(alg4, 3, pr3alg4):

alg4 > 

T3 := TanakaProlongation(alg4, 4, pr4alg4):

alg4 > 

T4 := TanakaProlongation(alg4, 5, pr5alg4):

alg4 > 

T5 := TanakaProlongation(alg4, 6, pr6alg4):

alg4 > 

T6 := TanakaProlongation(alg4, 7, pr7alg4):


We see that the dimensions of the prolongations grow by 2 at each order. 

alg4 > 

map(Tools:-DGinfo, [T0, T1, T2, T3, T4, T5, T6], "LieAlgebraDimension");




We use the command Rank1Elements to show that there are elements of &gfr;0 &equals; e7&comma;e8&comma; e9&comma; e10 whose adjoint matrices, restricted to &mfr; &equals; e1&comma; e2&comma; e3&comma; e4&comma; e5&comma; e6&comma;have rank 1. This will prove that the Tanaka prolongation of alg4 is infinite. First, initialize the 0-th prolongation

alg4 > 


Lie algebra: pr1alg4

pr1alg4 > 

E := Rank1Elements([e7, e8, e9, e10], [e1, e2, e3, e4, e5, e6]);




We can see by inspection that the rank of the adjoint matrix for _t3e9&plus;_t4e10 has rank 1.

pr1alg4 > 

Adjoint(E[1], [e1, e2, e3, e4, e5, e6]);




Finally, if we use the command ChangeGradedComponent to remove the vectors e9&comma; e10 from &gfr;0 &equals; e7&comma;e8&comma; e9&comma; e10 we obtain a Lie algebra newalg with finite Tanaka prolongation - in fact, in this simple example the prolongation is just newalg itself.

pr1alg4 > 

LD4a := ChangeGradedComponent(pr1alg4,[ 0 = [e7, e8]], newalg);


pr0alg4 > 


Lie algebra: newalg

newalg > 

TanakaProlongation(newalg, 6, prnewalg);


newalg > 


See Also

DifferentialGeometry, LieAlgebras, ChangeGradedComponent, DGinfo, LieAlgebraData, Query, SimpleLieAlgebraData, SimpleLieAlgebraProperties, Rank1Element