NaturallyReductivePair - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Query[NaturallyReductivePair] - check if a subalgebra, subspace pair is naturally reductive with respect to an inner product on the subspace

Calling Sequences

     Query(S, M, B, "NaturallyReductivePair")

     Query(S, M, B, parm, "NaturallyReductivePair")

Parameters

     S       - a list of independent vectors which defines a subalgebra in a Lie algebra g

     M       - a list of independent vectors which defines a reductive complement to S in g

     B       - a symmetric m x m matrix, which defines an inner product on M with respect to the given basis

     parm    - (optional) a set of parameters appearing in the list of vectors M

 

Description 

Examples

Description 

• 

 Let be a Lie algebra,  a subalgebra, and  a subspace. Let  be a non-degenerate inner product on .  Then the subalgebra, subspace pair  is called naturally reductive with respect to the inner product if [i] the subspace  defines a reductive complement to the subalgebra  and [ii] the inner product  is  invariant, that is, for all  and .  Here  denotes the component of with respect to the decomposition .

• 

Query(S, M, B, "NaturallyReductivePair") returns true if S, M is naturally reductive with respect to the inner product B, and false otherwise.

• 

Query(S, M, B, parm, "NaturallyReductivePair") returns a sequence TF, Eq, Soln, NatRedPair.  Here TF is true if Maple finds parameter values for which the pair S, M is naturally reductive and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for S, M to be naturally reductive; Soln is the list of solutions to the equations Eq; and NatRedPair is the list of naturally reductive subspaces and inner products obtained from the parameter values given by the different solutions in Soln.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

 

Example 1.

First initialize a Lie algebra.

 

Define a subspace , a complement , and an inner product  on .

Alg1 > 

 

Check that , is naturally reductive with respect to

Alg1 > 

(2.1)

 

Naturally reductive means that [i] the symmetric tensor  defined by is invariant with respect to the vectors in  and [ii] the Lie derivative of with respect to the vectors in vanishes on pairs of vectors from . Thus, for the above example we have:

Alg1 > 

(2.2)
Alg1 > 

(2.3)
Alg1 > 

(2.4)
Alg1 > 

(2.5)

 

Example 2.

In this example we consider a Lie algebra containing a parameter .  We find that a certain subspace admits a naturally reductive complement  when

First initialize a Lie algebra and display the Lie bracket multiplication table.

Alg1 > 

(2.6)
Alg1 > 

 

For we have that  is a reductive complement.  We let the inner product  be arbitrary.

Alg2 > 

Alg2 > 

(2.7)
Alg2 > 

 

We see that the that span  is naturally reductive only when .  To check this we substitute into the Lie algebra data structure for L2 and change the name of the algebra to Alg3.

Alg2 > 

(2.8)
Alg2 > 

(2.9)
Alg2 > 

Alg2 > 

(2.10)

See Also

DifferentialGeometry

LieAlgebras

LieDerivative

Query

 


Download Help Document