ChangeGradedComponent - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim

LieAlgebras[ChangeGradedComponent] - change one or more components of a graded Lie algebra

Calling Sequences

     ChangeGradedComponent(alg, newcomponent, newalg)



   alg          - a  name or string, the name of an initialized Lie algebra 𝔤

   newcomponent - a list, specifying the new graded components

   newalg       - a name or string, the name of a new graded Lie algebra to be created




See Also



Let 𝔤 be a graded Lie algebra with (for example) grading 𝔤 = 𝔤2  𝔤1  𝔤0  𝔤1 𝔤2 𝔤3 . With newcomponent given by (for example) [2 = h], where h is a list of vectors in 𝔤2, the command ChangeGradedComponent will return the structure equations for the new graded Lie algebra𝔤 = 𝔤2  𝔤1 𝔤0  𝔤1  h 𝔤3 .


with(DifferentialGeometry): with(LieAlgebras):


Example 1.

Define a 9-dimensional Lie algebra alg1 with grading 𝔤3  𝔤2 𝔤1 𝔤0, where 𝔤3= e1, e2, 𝔤2 = e3, 𝔤1 = e4 ,e5 and 𝔤0 = e6 ,e7 , e8, e9. Here are the structure equations:

StrEq := [[x1, x6] = -x1, [x1, x8] = -x2, [x2, x7] = -x1, [x2, x9] = -x2, [x3, x4] = -x1, [x3, x5] = -x2, [x3, x6] = -(1/3)*x3, [x3, x9] = -(1/3)*x3, [x4, x5] = x3, [x4, x6] = -(2/3)*x4, [x4, x8] = -x5, [x4, x9] = (1/3)*x4, [x5, x6] = (1/3)*x5, [x5, x7] = -x4, [x5, x9] = -(2/3)*x5, [x6, x7] = x7, [x6, x8] = -x8, [x7, x8] = x6-x9, [x7, x9] = x7, [x8, x9] = -x8];




Use the keyword grading to specify the grading of this algebra. Initialize.

LD1 := LieAlgebraData(StrEq, [x1, x2, x3, x4, x5, x6, x7, x8, x9], alg1, grading = [-3, -3, -2, -1, -1, 0, 0, 0, 0]);




Lie algebra: alg1



Note that the vectors e6, e7 define a 2-dimensional subalgebra of 𝔤0.

alg1 > 

LieBracket(e6, e7);




Therefore we can replace all of 𝔤0 with just e6, e7. The result is a 7-dimensional graded Lie algebra which is a sub-algebra of the one we started with.

alg1 > 

newLD1a := ChangeGradedComponent(alg1, [0 = [e6, e7]], newalg1);


alg1 > 


Lie algebra: newalg1

alg1 > 




See Also

DifferentialGeometry, LieAlgebras, TanakaProlongation