DGImageSpace - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DifferentialGeometry[DGNullSpace] - find the null space of a linear transformation acting on a vector space of vectors, differential forms, tensors

DifferentialGeometry[DGImageSpace] - find the image space of a linear transformation acting on a vector space of vectors, differential forms, tensors

 

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

DGNullSpace(L, A)

DGImageSpace(L, A)

Parameters

L

-

a procedure, defining a linear transformation  from a vector space  of vectors, forms, tensors etc., to another vector space  of vectors, forms, tensors

A

-

a list of vectors, forms, tensors etc., defining a basis for the vector space

Description

• 

Let   be a linear transformation. The null space of is . The image space of is  for some .

• 

The command DGNullSpace(L, A) returns a list of elements of  which define a basis for the null space of  The command DGImageSpace(L, A) returns a list of elements of  which define a basis for the image space of

Examples

 

Example 1.

Let be a 4-dimensional space, let be the vector space of 1-forms on and let be the vector space of 2-forms on . Fix a 1-form on , and define We find the null space and image space of .

 

(4.1)
V > 

(4.2)
V > 

(4.3)
V > 

(4.4)
V > 

(4.5)
V > 

(4.6)

 

Example 2.

Let be a 3-dimensional space, let be the vector space of covariant rank 2 tensors on   We define  to be the symmetrization operation, that is, for , define . We find the null space and image space for  .

V > 

(4.7)
V > 

(4.8)
V > 

(4.9)

 

The null space of  is the space of skew-symmetric tensors,

V > 

(4.10)

 

and the image space is the space of symmetric tensors.

V > 

(4.11)

See Also

DifferentialGeometry

Annihilator

ComplementaryBasis

DGbasis

DGsolve

IntersectSubspaces

 


Download Help Document