Arithmetic - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

ComplexBox

  

Arithmetic

  

arithmetic for ComplexBox objects

  

+

  

compute a sum involving ComplexBox objects

  

*

  

compute a product involving ComplexBox objects

  

^

  

compute a power involving ComplexBox objects

  

-

  

compute the negative of ComplexBox object

  

/

  

compute the reciprocal of ComplexBox object

  

conjugate

  

compute the conjugate of ComplexBox object

  

root

  

compute a root of ComplexBox object

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

-b

1/b

b1 + b2

b1 * b2

b1 ^ b2

b1 ^ z

conjugate( b )

root( b, n )

Parameters

b

-

ComplexBox object

b1

-

ComplexBox object

b2

-

ComplexBox object

z

-

extended complex numeric value

n

-

non-negative integer

Description

• 

The arithmetic operators , , ,  and  are available as methods for ComplexBox objects.

Operation

Description

-b

unary negation

1/b

unary inversion

b1 + b2

addition

b1 * b2

multiplication

b1 ^ b2

exponentiation

b1 ^ z

exponentiation

conjugate( b )

conjugation

root( b, n )

-th root

• 

Addition (+) and multiplication (*) are -ary operators that support more than two operands. The operators of negation (-) and inversion (/) are unary. The non-associative exponentiation operator (^) is binary.

• 

The conjugate of a ComplexBox object b can be computed by using the conjugate( b ) command.

• 

To compute roots of a ComplexBox object b, use the root( b, n ) command.

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Compatibility

• 

The ComplexBox[Arithmetic], ComplexBox:-+, ComplexBox:-*, ComplexBox:-^, ComplexBox:--, ComplexBox:-/, ComplexBox:-conjugate and ComplexBox:-root commands were introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

ComplexBox

RealBox

 


Download Help Document