FalsePosition - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Student[NumericalAnalysis]

  

FalsePosition

  

numerically approximate the real roots of an expression using the method of false position

 

Calling Sequence

Parameters

Options

Description

Examples

Calling Sequence

FalsePosition(f, x=[a, b], opts)

FalsePosition(f, [a, b], opts)

Parameters

f

-

algebraic; expression in the variable x representing a continuous function

x

-

name; the independent variable of f

a

-

numeric; one of two initial approximates to the root

b

-

numeric; the other of the two initial approximates to the root

opts

-

(optional) equation(s) of the form keyword=value, where keyword is one of functionoptions, lineoptions, maxiterations, output, pointoptions, showfunction, showlines, showpoints, showverticallines, stoppingcriterion, tickmarks, caption, tolerance, verticallineoptions, view; the options for approximating the roots of f

Options

• 

functionoptions = list

  

A list of options for the plot of the expression f. By default, f is plotted as a solid red line.

• 

lineoptions = list

  

A list of options for the lines on the plot. By default the lines are solid blue.

• 

maxiterations = posint

  

The maximum number of iterations to to perform when numerically approximating a root of f. The default value of maxiterations depends on which type of output is chosen:

– 

output=value : default maxiterations = 100

– 

output=sequence : default maxiterations = 10

– 

output=information : default maxiterations = 10

– 

output=plot : default maxiterations = 5

– 

output=animation : default maxiterations = 10

• 

output = value, sequence, plot, animation, information

  

The return value of the function. The default is value.

– 

output=value returns the final numerical approximation of the root.

– 

output=sequence returns an expression sequence, pk, k=0..n, where the first n1 elements are the subintervals that contain an approximation and the nth element is the final approximate root.

– 

output=plot returns a plot of f with each iterative approximation shown and the relevant information about the numerical approximation displayed in the caption of the plot.

– 

output=animation returns an animation of the numerical approximation on the plot of f.

– 

output=information returns detailed information about the iterative approximations of the root of f.

• 

pointoptions = list

  

A list of options for the points on the plot. By default, the points are plotted as green circles.

• 

showfunction = true or false

  

Whether to display f on the plot or not.  By default, this option is set to true.

• 

showlines = true or false

  

Whether to display lines that accentuate each approximate iteration when output=plot. By default, this option is set to true. To control the vertical lines, see the showverticallines and verticallineoptions options.

• 

showpoints = true or false

  

Whether to display the points at each approximate iteration on the plot when output=plot. By default, this option is set to true.

• 

showverticallines = true or false

  

Whether to display the vertical lines at each iterative approximation on the plot when output=plot. By default, this option is set to true.

• 

stoppingcriterion = relative, absolute, function_value

  

The criterion that the approximation must meet before discontinuing the iterations. The following describes each criterion:

– 

relative : pnpn1pn < tolerance

– 

absolute : pnpn1 < tolerance

– 

function_value : fpn < tolerance

  

By default, stoppingcriterion=relative.

• 

tickmarks = list

  

The tickmarks when output=plot or output=animation. By default, tickmarks are placed at the initial and final approximations with the labels a and b for the two initial approximates and the label pn for the final approximation, where n is the total number of iterations used to reach the final approximation.  If the stopping criterion is not met, no tickmark will be placed on the last approximation. See plot/tickmarks for more detail on specifying tickmarks.

• 

caption = string

  

A caption for the plot. The default caption contains general information concerning the approximation. For more information about specifying a caption, see plot/typesetting.

• 

tolerance = positive

  

The error tolerance of the approximation. The default value is 110000.

• 

verticallineoptions = list

  

A list of options for the vertical lines on the plot. By default, the lines are dashed and blue.

• 

view = [realcons..realcons, realcons..realcons]

  

The plot view of the plot when output = plot.  See plot/options for more information.

Description

• 

The FalsePosition command numerically approximates the roots of an algebraic function, f, using a technique similar to the Secant method, but bracketing is incorporated.

• 

Given an expression f and an initial approximate a, the FalsePosition command computes a sequence pk, k=0..n, of approximations to a root of f, where n is the number of iterations taken to reach a stopping criterion.

• 

The FalsePosition command is a shortcut for calling the Roots command with the method=falseposition option.

Examples

withStudentNumericalAnalysis&colon;

fx37x2+14x6&colon;

FalsePositionf&comma;x=2.7&comma;3.2&comma;tolerance=102

3.014898139

(1)

FalsePositionf&comma;x=2.7&comma;3.2&comma;tolerance=102&comma;output=sequence

2.7&comma;3.2,2.7&comma;3.100884956,2.7&comma;3.041032849,3.014898139

(2)

FalsePositionf&comma;x=2.7&comma;3.2&comma;tolerance=102&comma;stoppingcriterion=absolute

3.005163289

(3)

To play the following animation in this help page, right-click (Control-click, on Macintosh) the plot to display the context menu.  Select Animation > Play.

FalsePositionf&comma;x=3.2&comma;4.0&comma;output=animation&comma;tolerance=102&comma;stoppingcriterion=function_value

FalsePositionf&comma;x=2.9&comma;3.1&comma;output=plot

See Also

Student[NumericalAnalysis]

Student[NumericalAnalysis][Roots]

Student[NumericalAnalysis][VisualizationOverview]

 


Download Help Document