RepresentingChain - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


RegularChains[SemiAlgebraicSetTools]

  

RepresentingChain

  

return the regular chain part of a regular semi-algebraic set/system

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

RepresentingChain(rst, R)

RepresentingChain(rsas, R)

Parameters

rst

-

a regular semi-algebraic set

rsas

-

a regular semi-algebraic system

R

-

a polynomial ring

Description

• 

The command RepresentingChain(rst, R) or the command RepresentingChain(rsas, R) returns the regular chain part of its first argument.

  

See the page SemiAlgebraicSetTools for the definition of a regular semi-algebraic system and that of a regular semi-algebraic set.

Examples

withRegularChains:

withChainTools:

withParametricSystemTools:

withSemiAlgebraicSetTools:

fax2+bx+c

fax2+bx+c

(1)

Ff

Fax2+bx+c

(2)

N

N

(3)

P

P

(4)

H

H

(5)

RPolynomialRingx,a,b,c

Rpolynomial_ring

(6)

d3

d3

(7)

rrcRealRootClassificationF,N,P,H,d,1..n,R

rrcregular_semi_algebraic_set,border_polynomial

(8)

rstrrc11

rstregular_semi_algebraic_set

(9)

rcRepresentingChainrst,R

rcregular_chain

(10)

Inforc,R

(11)

Fax2+bx+c=0&comma;0<x&comma;a0

Fax2+bx+c=0&comma;0<x&comma;a0

(12)

RPolynomialRingx&comma;c&comma;b&comma;a

Rpolynomial_ring

(13)

outLazyRealTriangularizeF&comma;R&comma;output=list

outregular_semi_algebraic_system

(14)

mapDisplay&comma;out&comma;R

ax2+bx+c=0x>04ca+b2>0andb<0andc>0anda0or4ca+b2>0andb>0andc>0anda<0or4ca+b2>0andb>0andc<0anda0or4ca+b2>0andb<0andc<0anda>0

(15)

PPositiveInequalitiesout1&comma;R

Px

(16)

rcRepresentingChainout1&comma;R&semi;Displayrc&comma;R

rcregular_chain

ax2+bx+c=0a0

(17)

qffRepresentingQuantifierFreeFormulaout1&semi;Displayqff&comma;R

qffquantifier_free_formula

4ca+b2>0andb<0andc>0anda0

or4ca+b2>0andb>0andc>0anda<0

or4ca+b2>0andb>0andc<0anda0

or4ca+b2>0andb<0andc<0anda>0

(18)

Displayout1&comma;R

ax2+bx+c=0x>04ca+b2>0andb<0andc>0anda0or4ca+b2>0andb>0andc>0anda<0or4ca+b2>0andb>0andc<0anda0or4ca+b2>0andb<0andc<0anda>0

(19)

See Also

IsParametricBox

PositiveInequalities

RealRootClassification

RegularChains

RepresentingBox

RepresentingChain

RepresentingQuantifierFreeFormula

RepresentingRootIndex

VariableOrdering

 


Download Help Document