Student[MultivariateCalculus] Examples - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Applications and Example Worksheets : Calculus : Student[MultivariateCalculus] Examples

Student MultivariateCalculus Examples

The Student:-MultivariateCalculus package is designed to aid in the teaching and understanding of multivariate calculus concepts.  For a general overview, see MultivariateCalculus.  For introductory examples, see MultivariateCalculus Example Worksheet.

Lines and Planes

Initialization

• 

Tools≻Load Package: Student Multivariate Calculus

with(Student:-MultivariateCalculus):

Example 1: Equation of a Plane

Obtain the equation of the plane containing the three points 1,2,3, 1,3,1, 2,1,1.

• 

Write a sequence of the three points.

• 

Context Panel: Student Multivariate Calculus≻Lines & Planes≻Plane
In the "Choose Variables for Plane" dialog, accept default names or provide new ones.

• 

Context Panel: Student Multivariate Calculus≻Lines & Planes≻Representation

1,2,3,1,3,1,2,1,1make planeStudent:-MultivariateCalculus:-Plane6101,1,2,3,variables=x,y,z,id=1representation6x10y+z=−23

Example 2: Skew Lines

Show that x=1+2 t,y=23 t,z=3+5 t and x=3s,y=5+3,z=7+6 s define skew lines, and find the distance between them.

Create Line Objects for each line

• 

Form a list of the parametric equations defining a line.

• 

Context Panel: Student Multivariate Calculus≻Lines & Planes≻Line≻t or s, as appropriate

• 

Context Panel: Assign to a Name≻L1 (or L2, as appropriate)

x=1+2 t,y=23 t,z=3+5 tmake lineStudent:-MultivariateCalculus:-Line1,2,3,235,variables=x,y,z,parameter=t,id=1assign to a nameL1

x=3s,y=5+3,z=7+6 smake lineStudent:-MultivariateCalculus:-Line3,8,7,106,variables=x,y,z,parameter=s,id=2assign to a nameL2

Verify the lines are skew

• 

Context Panel: Student Multivariate Calculus≻Lines & Planes≻Skew (or Parallel or Intersects)

L1,L2skew lines?true

L1,L2parallel?false

L1,L2intersect?false

Obtain the distance between the lines

• 

Context Panel: Student Multivariate Calculus≻Lines & Planes≻Distance

• 

Context Panel: Approximate≻10 (digits)

L1,L2distance75622311at 10 digits6.014452050

The standard approach to finding the distance between skew lines is vectorial: Obtain N, the vector orthogonal to both lines, and project V, any vector from one line to the other, onto N. The length of this projection is the distance between the lines.

Obtain N, the common normal

• 

Context Panel: Student Multivariate Calculus≻Lines & Planes≻Direction

• 

Context Panel: Assign to a Name≻V1 (or V2, as applicable)

L1direction235assign to a nameV1