ConvergenceRadius - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

SumTools[DefiniteSum]

  

Converges

  

check if an infinite series converges unconditionally

  

ConvergenceRadius

  

radius of convergence of an infinite series

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Converges(f, k, m, n)

Converges(s)

ConvergenceRadius(f, k, m, n, x)

ConvergenceRadius(s, x)

Parameters

f

-

expression; the summand

k

-

name; the summation index

m, n

-

expressions or integers; the summation bounds

s

-

inert or unevaluated definite sum;

x

-

name; the series variable

Description

• 

The Converges(f, k, m, n) and Converges(s) commands check if the series  converges unconditionally, and return  if it does,  if it diverges unconditionally, and  otherwise. Typically, , but alternatively  is also possible.

• 

The return value of  can indicate either that  neither converges unconditionally nor diverges unconditionally, i.e., the convergence behavior depends on the value of a parameter, or that the command was unable to determine the convergence behavior for some other reason. In the first case, the ConvergenceRadius can be used to find a condition for convergence.

• 

The ConvergenceRadius(f, k, m, n, x) and ConvergenceRadius(s, x) commands determine the radius of convergence  of the series  w.r.t. . The result is returned in the form , where .   has the additional property that  diverges when .

• 

If  is not a Taylor, Laurent or Puiseux series, or if the expansion point of  is not , then ConvergenceRadius may return a more general inequality of the form , where  is not necessarily the convergence radius.

• 

If  converges unconditionally, then ConvergenceRadius returns , and if  diverges unconditionally, the result is .

• 

All calling sequences may return  if the convergence condition cannot be determined, or if  and .

• 

If both  and  are finite, then Converges returns , and ConvergenceRadius returns .

Examples

(1)

(2)

(3)

(4)

(5)

(6)

The convergence behavior of the following oscillating series cannot be determined.

(7)

(8)

(9)

(10)

The power series of  converges unconditionally for all .

(11)

(12)

The convergence behavior of the following series depends on the value of .

(13)

(14)

(15)

(16)

The following series does not depend on  and diverges unconditionally.

(17)

(18)

(19)

(20)

If the expansion point is not the origin, a more general inequality may be returned.

(21)

(22)

(23)

(24)

Compatibility

• 

The SumTools[DefiniteSum][Converges] and SumTools[DefiniteSum][ConvergenceRadius] commands were introduced in Maple 2025.

• 

For more information on Maple 2025 changes, see Updates in Maple 2025.

See Also

series

sum

SumTools

 


Download Help Document