Systems of ODEs with IVP - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

ODE Steps for Systems of ODEs with IVP

 

Overview

Examples

Overview

• 

This help page gives a few examples of using the command ODESteps to solve systems of ordinary differential equations with initial values.

• 

See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.

Examples

withStudent:-ODEs:

high_order_ivp1diffyx,x,x,x+3diffyx,x,x+4diffyx,x+2yx=0,evaldiffyx,x,x=0=1,evaldiffyx,x,x,x=0=2,y0=1

high_order_ivp1ⅆ3ⅆx3yx+3ⅆ2ⅆx2yx+4ⅆⅆxyx+2yx=0,ⅆ2ⅆx2yxx=0|ⅆ2ⅆx2yxx=0=2,ⅆⅆxyxx=0|ⅆⅆxyxx=0=−1,y0=1

(1)

ODEStepshigh_order_ivp1

Let's solveⅆ3ⅆx3yx+3ⅆ2ⅆx2yx+4ⅆⅆxyx+2yx=0,ⅆ2ⅆx2yxx=0|ⅆ2ⅆx2yxx=0=2,ⅆⅆxyxx=0|ⅆⅆxyxx=0=−1,y0=1Highest derivative means the order of the ODE is3ⅆ3ⅆx3yxCharacteristic polynomial of ODEr3+3r2+4r+2=0Roots of the characteristic polynomialr=−1,−1I,−1+ISolution fromr=−1y1x=ⅇxSolutions fromr=−1Iandr=−1+Iy2x=ⅇxsinx,y3x=ⅇxcosxGeneral solution of the ODEyx=c__1y1x+c__2y2x+c__3y3xSubstitute in solutions and simplifyyx=ⅇxc__1+c__2sinx+c__3cosxUse the initial conditiony0=11=c__1+c__3Calculate the 1st derivative of the solutionⅆⅆxyx=ⅇxc__1+c__2sinx+c__3cosx+ⅇxc__2cosxc__3sinxUse the initial conditionⅆⅆxyxx=0|ⅆⅆxyxx=0=−1−1=c__1c__3+c__2Calculate the 2nd derivative of the solutionⅆ2ⅆx2yx=ⅇxc__1+c__2sinx+c__3cosx2ⅇxc__2cosxc__3sinx+ⅇxc__2sinxc__3cosxUse the initial conditionⅆ2ⅆx2yxx=0|ⅆ2ⅆx2yxx=0=22=c__12c__2Solve for the unknown coefficientsc__1=2,c__2=0,c__3=−1Solution to the IVPyx=ⅇx2cosx

(2)

macroY=y1x,y2x:

ivpsys2diffY,x=`%.`Matrix7,1,`-`4,3,Y,evalY,x=0=1,1

ivpsys2ⅆⅆxy1xⅆⅆxy2x=71−43·y1xy2x,y10y20=11

(3)

ODEStepsivpsys2

ivpsys3diffY,x=Matrix1,2,3,2·Y+1,expx,evalY,x=1=0,1

ivpsys3ⅆⅆxy1xⅆⅆxy2x=y1x+2y2x+13y1x+2y2x+ⅇx,y11y21=0−1

(4)

ODEStepsivpsys3

ivpsys4diffwx,x=wx+2zx,diffzx,x=3wx+2zx+expx,w1=2,z1=2

ivpsys4ⅆⅆxwx=wx+2zx,ⅆⅆxzx=3wx+2zx+ⅇx,w−1=2,z−1=−2

(5)

ODEStepsivpsys4

See Also

diff

Int

Student

Student[ODEs]

Student[ODEs][ODESteps]

 


Download Help Document