Ring Shape C - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

# Online Help

###### All Products    Maple    MapleSim

Ring Shape C

Ring-shaped solid material, Type C

 Description The Ring Shape C component models a generic ideal thermal conductor with ring shape. Ring Shape is divided into concentric Ring nodes the total number of which is determined by $\mathrm{Nodes}$. You can get the thermal information from each Ring node. The geometry of Ring Shape C is the following. The image below illustrates the case of Ring Shape C having $\mathrm{Nodes}$=[3, 3]. The order of  is the following. The numbers of the $\mathrm{port_outer}\left[i\right]$ and $\mathrm{port_inner}\left[i\right]$ of the nodes are determined by the order from front to back. This rule is the same as the numbering of the $\mathrm{port_outer}\left[i\right]$ and $\mathrm{port_inner}\left[i\right]$ of Ring Shape A.

 The node and port_front[i] numbers The node and port_back[i] numbers

 Equations (For details, see Ring Sector, Thermal Conductor  and Heat Capacitor help).

Variables

(For details, see Ring Sector, Thermal Conductor  and Heat Capacitor help).

 Symbol Units Description Modelica ID $T\left[i\right]$ $K$ Temperature of i-th Heat Capacitor T[]

Connections

 Name Description Modelica ID $\mathrm{port_outer}\left[i\right]$ i-th thermal port of outer The total number of i is determined by Nodes[2] port_outer[] $\mathrm{port_inner}\left[i\right]$ i-th thermal port of inner The total number of i is determined by Nodes[2] port_inner[] $\mathrm{port_front}\left[i\right]$ i-th thermal port of front The total number of i is determined by Nodes[1] port_front[] $\mathrm{port_back}\left[i\right]$ i- th thermal port of back The total number of i is determined by Nodes[1] port_back[] $\mathrm{port_center}\left[i\right]$ i-th thermal port of center The total number of i is determined by Nodes[1]*Nodes[2] port_center[]

Parameters

 Symbol Default Units Description Modelica ID $\mathrm{Material}$ $\mathrm{SolidPropertyData1}$ $-$ Solid material property data Material $\frac{W}{m\cdot K}$ Material.k is the thermal conductivity of the material Material.k $\frac{J}{\mathrm{kg}\cdot K}$ Material.cp is the specific heat capacity of the material Material.cp $\frac{\mathrm{kg}}{{m}^{3}}$ Material.rho is the density of the material Material.rho ${R}_{o}$ $1$ ${m}^{}$ Outer radius of the shape Ro $\mathrm{R__i}$ $0.5$ ${m}^{}$ Inner radius of the shape Ri $D$ $1$ ${m}^{}$ Depth of the node D $\mathrm{Nodes}$ $\left[3,3\right]$ $-$ Number of nodes [1]:Number of concentric ring, [2]:Depth axis numNode[] $\mathrm{T__start}$ $293.15$ $K$ Initial condition of temperature T_start $\mathrm{fixed}$ $\mathrm{true}$ $-$ True enforces the T_start initial condition fixed

Parameters for Visualization (Optional)

Note: If you enable Show Visualization option, you can visualize temperature change as colored geometry in 3-D Playback Window. To make this function available, you have to enable 3-D Animation option in Multibody Settings.
The quality of the visualization is affected if any open plot windows are behind the 3-D Playback Window. If you are experiencing playback issues, try moving the 3-D Playback Window so that it does not overlap a plot window. Alternatively, minimize or close any open plot windows.

(For more details about the relation between color and temperature, see Color Blend  help).

 Symbol Default Units Description Modelica ID $\mathrm{false}$ $-$ If true, you can visualize the temperature of heat capacitor of each node Shape as colored geometry in 3-D Playback Window. And the following visualization parameters are available. VisOn $\mathrm{Position}$ $\left[0,0,0\right]$ $m$ Position of the node in visualization [X, Y, Z]. pos[3] Rotation $\left[0,0,0\right]$ rad Rotation of the node in visualization [X, Y, Z]. rot[3] $\mathrm{Transparent}$ $\mathrm{false}$ $-$ If true, shape geometry will be transparent. transparent $\mathrm{T__max}$ $373.15$ $K$ Upper limit of temperature in the color blend. Tmax $\colorbox[rgb]{1,0,0}{{\mathrm{RGB}}}\left(\colorbox[rgb]{1,0,0}{{255}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\right)$ $-$ Color when temperature is over Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmax $\mathrm{T__min}$ $273.15$ $K$ Lower limit of temperature in the color blend. Tmin $\colorbox[rgb]{0,0,1}{{\mathrm{RGB}}}\left(\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{255}}\right)$ $-$ Color when temperature is under $\mathrm{T__min}$. Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmin $\mathrm{true}$ $-$ If true, heat capacitor sphere will be shown. showCapacitor $\mathrm{R__sphere}$ $0.2$ $m$ Radius of visualized heat capacitor sphere. Sradius

 See Also