Ring Sector

A node of Ring Sector

 Description The Ring Sector component models a generic ideal thermal conductor with ring sector geometry. The following image uses Thermal Conductor components to illustrate the behavior of the Ring Sector component. Each Thermal Conductor component is connected to the $\mathrm{port_outer}$, $\mathrm{port_inner}$, $\mathrm{port_front}$, $\mathrm{port_back}$, $\mathrm{port_left}$, and $\mathrm{port_right}$. All Thermal Conductors are connected to the Heat Capacitor. The is directly connected to the Heat Capacitor. The geometry of Ring Sector:

Equations

(For details, see Thermal Conductor  and Heat Capacitor help).

The geometries of Heat Capacitor and each Thermal Conductor are defined by the following equations.

 Heat Capacitor The volume $V$ is defined by the following equation. $V=\mathrm{π}\cdot \left({\mathrm{R__o}}^{2}-{\mathrm{R__i}}^{2}\right)\cdot D\mathit{\cdot }\frac{\mathrm{Θ}}{2\cdot \mathrm{\pi }}$
 Thermal Conductor The area $A$ and distance are defined by the following equations. Outer Thermal Conductor $\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}A=$$\frac{2\cdot \mathrm{π}\cdot \frac{\mathrm{R__o}-\mathrm{R__i}}{2}\cdot D}{\mathrm{ln}\left(\frac{\mathrm{R__o}}{\left(\frac{\mathrm{R__o}+\mathrm{R__i}}{2}\right)}\right)}\cdot \frac{\mathrm{Θ}}{2\cdot \mathrm{\pi }}$$\frac{\mathrm{R__o}-\mathrm{R__i}}{2}$ Inner Thermal Conductor $\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}A=$$\frac{2\cdot \mathrm{π}\cdot \frac{\mathrm{R__o}-\mathrm{R__i}}{2}\cdot D}{\mathrm{ln}\left(\frac{\left(\frac{\mathrm{R__o}+\mathrm{R__i}}{2}\right)}{\mathrm{R__i}}\right)}\cdot \frac{\mathrm{Θ}}{2\cdot \mathrm{\pi }}$$\frac{\mathrm{R__o}-\mathrm{R__i}}{2}$  Front and back Thermal Conductors $\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}A=$$\mathrm{π}\mathit{\cdot }\left({\mathrm{R__o}}^{2}-{\mathrm{R__i}}^{2}\right)\mathit{\cdot }\frac{\mathrm{Θ}}{2\cdot \mathrm{\pi }}$$\frac{D}{2}$ Left and right Thermal Conductors $\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}A=$$\left(\mathrm{R__o}-\mathrm{R__i}\right)\cdot D$$2\cdot \mathrm{π}\cdot \frac{\mathrm{R__o}+\mathrm{R__i}}{2}\cdot \frac{\mathrm{Θ}}{2\cdot \mathrm{\pi }}\cdot \frac{1}{2}$

Variables

(For details, see Thermal Conductor  and Heat Capacitor help).

 Symbol Units Description Modelica ID $T$ $K$ Temperature of Heat Capacitor T

Connections

 Name Description Modelica ID $\mathrm{port_outer}$ Thermal port of outer $\mathrm{port_outer}$ $\mathrm{port_inner}$ Thermal port of inner $\mathrm{port_inner}$ $\mathrm{port_front}$ Thermal port of front $\mathrm{port_front}$ $\mathrm{port_back}$ Thermal port of back $\mathrm{port_back}$ $\mathrm{port_left}$ Thermal port of left $\mathrm{port_left}$ $\mathrm{port_right}$ Thermal port of right $\mathrm{port_right}$ $\mathrm{port_center}$ Thermal port of center $\mathrm{port_center}$

Parameters

 Symbol Default Units Description Modelica ID $\mathrm{Material}$ $\mathrm{SolidPropertyData1}$ $-$ Solid material property data Material $\frac{W}{m\cdot K}$ Material.k is the thermal conductivity of the material Material.k $\frac{J}{\mathrm{kg}\cdot K}$ Material.cp is the specific heat capacity of the material Material.cp $\frac{\mathrm{kg}}{{m}^{3}}$ Material.rho is the density of the material Material.rho $\mathrm{R__o}$ $1$ ${m}^{}$ Outer radius of the ring sector Ro $\mathrm{R__i}$ $0.5$ ${m}^{}$ Inner radius of the ring sector Ri $D$ $1$ ${m}^{}$ Depth of the ring sector D $\mathrm{θ}$ $0.3$ $\mathrm{rad}$ Central angle of the sector Theta $\mathrm{T__start}$ $293.15$ $K$ Initial condition of temperature T_start $\mathrm{fixed}$ $\mathrm{true}$ $-$ True enforces the T_start initial condition fixed

Parameters for Visualization (Optional)

Note: If you enable Show Visualization option, you can visualize temperature change as colored geometry in 3-D Playback Window. To make this function available, you have to enable 3-D Animation option in Multibody Settings.
The quality of the visualization is affected if any open plot windows are behind the 3-D Playback Window. If you are experiencing playback issues, try moving the 3-D Playback Window so that it does not overlap a plot window. Alternatively, minimize or close any open plot windows.

(For more details about the relation between color and temperature, see Color Blend  help).

 Symbol Default Units Description Modelica ID $\mathrm{false}$ $-$ If true, you can visualize the temperature of heat capacitor Node as colored geometry in 3-D Playback Window. And the following visualization parameters are available. VisOn $\mathrm{Position}$ $\left[0,0,0\right]$ $m$ Position of the node in visualization [X, Y, Z]. pos[3] Rotation $\left[0,0,0\right]$ rad Rotation of the node in visualization [X, Y, Z]. rot[3] $\mathrm{Transparent}$ $\mathrm{false}$ $-$ If true, node geometry will be transparent. transparent $\mathrm{T__max}$ $373.15$ $K$ Upper limit of temperature in the color blend. Tmax $\colorbox[rgb]{1,0,0}{{\mathrm{RGB}}}\left(\colorbox[rgb]{1,0,0}{{255}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\right)$ $-$ Color when temperature is over Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmax $\mathrm{T__min}$ $273.15$ $K$ Lower limit of temperature in the color blend. Tmin $\colorbox[rgb]{0,0,1}{{\mathrm{RGB}}}\left(\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{255}}\right)$ $-$ Color when temperature is under $\mathrm{T__min}$. Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmin $\mathrm{true}$ $-$ If true, heat capacitor sphere will be shown. showCapacitor $\mathrm{R__sphere}$ $0.2$ $m$ Radius of visualized heat capacitor sphere. Sradius $\mathrm{false}$ $-$ If true, node geometry will be shown as a cylinder. This parameter is for compatibility with previous versions. showNode