IsExtraspecial - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

IsSpecial

  

determine whether a group is a special p-group, for some prime p

  

IsExtraspecial

  

determine whether a group is an extraspecial p-group, for some prime p

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

IsSpecial( G )

IsExtraspecial( G )

Parameters

G

-

: PermutationGroup : a permutation group

Description

• 

Let  be a finite of prime-power order. We say that  is special if either  is elementary abelian, or if the center, derived subgroup, and Frattini subgroup of  all coincide and is elementary abelian. If, in addition, these coindicent subgroups of  have prime order, then  is said to be extraspecial. Note that non-trivial abelian groups are not extraspecial, since their centers and derived subgroups cannot be equal.

• 

The IsSpecial( G ) command returns true if the permutation group G is a special -group, for some prime number .

• 

The IsExtraspecial( G ) command returns true if the permutation group G is an extraspecial -group, for some prime number .

• 

Both commands return false if the group G is not a -group for any prime number .

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[DihedralGroup]

 


Download Help Document