Det
inert determinant
Calling Sequence
Parameters
Description
Examples
Det(A)
A
-
Matrix
The Det function is a placeholder for representing the determinant of the matrix A. It is used in conjunction with mod and modp1 which define the coefficient domain as described below.
Note: To find the determinant of a matrix, see LinearAlgebra:-Determinant.
The call DetAmodm computes the determinant of the matrix Amodm in characteristic m which may or may not be prime. The entries in A may be integers, rationals, polynomials, or in general, rational functions in parameters over a finite field.
The call modp1DetA,p computes the determinant of the matrix Amodp where p is a prime integer and the entries of A are modp1 polynomials using fraction-free Gaussian elimination.
A≔Matrix2,3,1,3,2,3,0,3,2
A≔231323032
DetAmod3
2
DetAmod6
5
C≔Matrixx−2,3,1,3,x−2,3,0,3,x−2
C≔x−2313x−2303x−2
DetCmod3
x3+1
CharpolyA,xmod3
aliasα=RootOfx4+x+1:
A≔Matrix1,α,α2,α,1,α,α2,α,1
A≔1αα2α1αα2α1
DetAmod2
α
A≔Matrix1−α,αt,1−αt,1+α,αt,1+αt,α,1−αt,αt
A≔1−ααt−αt+11+ααtαt+1α1−αtαt
collectDetAmod2,t
α2t2+α2t+α2+α2t
See Also
Charpoly
LinearAlgebra:-Determinant
LinearAlgebra:-Modular
LinearAlgebra:-Modular:-Determinant
mod
modp1
Download Help Document