Physics for Maple 2023 - Maple Help

 Physics

Maple provides a state-of-the-art environment for algebraic computations in Physics, with emphasis on ensuring that the computational experience is as natural as possible. The theme of the Physics project for Maple 2023 has been the use of the package in Education, new commands, the consolidation of the functionality introduced in previous releases, also related to the StandardModel package, and several enhancements necessary for producing the new Courseware-Support, Mechanics material.

As part of its commitment to providing the best possible computational environment in Physics, Maplesoft launched a Maple Physics: Research and Development website in 2014, which enabled users to download research versions of the package, ask questions, and provide feedback. The results from this accelerated exchange have been incorporated into the Physics package in Maple 2023. The presentation below illustrates both the novelties and the kind of mathematical formulations that can now be performed.

Courseware support: Mechanics

The Physics package, with its various subpackages, is now a resourceful, mature project. For Maple 2023, part of the focus has been in its use in Education in Physics, starting with Mechanics. The resulting material is now part of Maple's help system and can be opened to interact with it as a Maple document. The presentation is organized as a hyperlinked syllabus covering typical topics appearing in Mechanics undergrad courses of the first years. For the Maple 2023 release, Part I covers:

 b The velocity $\stackrel{\to }{v}\left(t\right)$
 c The acceleration $\stackrel{\to }{a}\left(t\right)$
 d
 1
 a
 A
 B
 A
 B
 a
 i
 ii
 a
 i
 1 Conservation laws
 a
 e
 a
 b
 i
 ii
 b
 1
 b
 1
 a
 b

New command Lagrange Equations

There is now a new Physics command, LagrangeEquations, taking advantage of the functional differentiation capabilities. LagrangeEquations receives an expression representing a Lagrangian and returns a sequence of Lagrange equations with as many equations as coordinates are indicated. The formula in the traditional case where the Lagrangian depends on 1st order derivatives of the coordinates and there is only one parameter, $t$, is

$\frac{{ⅆ}}{{ⅆ}t}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\frac{{\partial }}{{\partial }{\stackrel{\to }{v}}_{i}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}L=\frac{{\partial }}{{\partial }{\stackrel{\to }{r}}_{i}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}L$

 where $\frac{{\partial }}{{\partial }{\stackrel{\to }{r}}_{i}}L$ formally represents the derivative with respect to the coordinates of the ${i}^{\mathrm{th}}$ particle, equal to the Gradient when working in Cartesian coordinates; $\frac{{\partial }}{{\partial }{\stackrel{\to }{v}}_{i}}L$ represents the equivalent operation, replacing each coordinate by the corresponding generalized velocity and $\frac{{ⅆ}}{{ⅆ}t}$ represents the total derivative with respect to $t$, the parameter parametrizing the coordinates. In more general cases the number of parameters can be many. For example, in electrodynamics, the "coordinate" is a tensor field ${A}_{\mathrm{\mu }}\left(x,y,z,t\right)$, there are then four coordinates, one for each of the values of the index $\mathrm{\mu }$, and there are four parameters $\left(x,y,z,t\right)$. LagrangeEquations can handle tensors and vectors of the Physics package as well as derivatives using vectorial differential operators (see d_ and Nabla), works by performing functional differentiation (see Fundiff), and handles 1st, and higher order derivatives of the coordinates in the Lagrangian automatically.

Examples

$\mathrm{with}\left(\mathrm{Physics}\right):$

$\mathrm{Setup}\left(\mathrm{mathematicalnotation}=\mathrm{true},\mathrm{coordinates}=\mathrm{cartesian}\right)$

 $\left[{\mathrm{coordinatesystems}}{=}\left\{{X}\right\}{,}{\mathrm{mathematicalnotation}}{=}{\mathrm{true}}\right]$ (1)

The Lagrangian of a one-dimensional oscillator - small oscillations

 ${L}{≔}\frac{{\stackrel{{\mathbf{.}}}{{x}}{}\left({t}\right)}^{{2}}}{{2}}{-}\frac{{k}{}{{x}{}\left({t}\right)}^{{2}}}{{2}}$ (2)

The corresponding Lagrange equation gives Newton's second law, a 2nd order linear ODE for $x\left(t\right)$

 $\stackrel{{\mathbf{..}}}{{x}}{}\left({t}\right){+}{x}{}\left({t}\right){}{k}{=}{0}$ (3)

The Lagrangian of a pendulum of mass $m$ and length $l$ where the suspension point moves uniformly over a vertical circumference centered at the origin, with a constant frequency $\mathrm{\omega }$

 ${\mathrm{\phi }}{}\left({t}\right){}{\mathrm{will now be displayed as}}{}{\mathrm{\phi }}$ (4)

 ${L}{≔}\frac{{m}{}\left({-}{2}{}\stackrel{{\mathbf{.}}}{{\mathrm{\phi }}}{}{a}{}{l}{}{\mathrm{\omega }}{}{\mathrm{sin}}{}\left({\mathrm{\omega }}{}{t}{-}{\mathrm{\phi }}\right){+}{{\stackrel{{\mathbf{.}}}{{\mathrm{\phi }}}}^{{}}}^{{2}}{}{{l}}^{{2}}{+}{2}{}{\mathrm{cos}}{}\left({\mathrm{\phi }}\right){}{g}{}{l}\right)}{{2}}$ (5)

The Lagrange equations

 ${-}{m}{}{l}{}\left({-}{a}{}{{\mathrm{\omega }}}^{{2}}{}{\mathrm{cos}}{}\left({\mathrm{\omega }}{}{t}{-}{\mathrm{\phi }}\right){+}\stackrel{{\mathbf{..}}}{{\mathrm{\phi }}}{}{l}{+}{\mathrm{sin}}{}\left({\mathrm{\phi }}\right){}{g}\right){=}{0}$ (6)

The Maxwell equations can be derived as Lagrange equations as follows. For simplicity, consider Maxwell equations in vacuum. Define first a tensor representing the 4D electromagnetic field potential

 $\left\{{{A}}_{{\mathrm{\mu }}}{,}{{\mathrm{\gamma }}}_{{\mathrm{\mu }}}{,}{{\mathrm{\sigma }}}_{{\mathrm{\mu }}}{,}{{\partial }}_{{\mathrm{\mu }}}{,}{{g}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\epsilon }}}_{{\mathrm{\alpha }}{,}{\mathrm{\beta }}{,}{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{X}}_{{\mathrm{\mu }}}\right\}$ (7)

The electromagnetic field tensor

$F\left[\mathrm{\mu },\mathrm{\nu }\right]≔\mathrm{d_}\left[\mathrm{\mu }\right]\left(A\left[\mathrm{\nu }\right]\left(X\right)\right)-\mathrm{d_}\left[\mathrm{\nu }\right]\left(A\left[\mathrm{\mu }\right]\left(X\right)\right)$

 ${{F}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{≔}{{\partial }}_{{\mathrm{\mu }}}{}\left({{A}}_{{\mathrm{\nu }}}{}\left({X}\right)\right){-}{{\partial }}_{{\mathrm{\nu }}}{}\left({{A}}_{{\mathrm{\mu }}}{}\left({X}\right)\right)$ (8)

The Lagrangian

 ${L}{≔}\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{A}}_{{\mathrm{\nu }}}{}\left({X}\right)\right){-}{{\partial }}_{{\mathrm{\nu }}}{}\left({{A}}_{{\mathrm{\mu }}}{}\left({X}\right)\right)\right){}\left({{\partial }}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}{}\left({{A}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\nu }}}{}\left({X}\right)\right){-}{{\partial }}_{\phantom{{}}\phantom{{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\nu }}}{}\left({{A}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}{}\left({X}\right)\right)\right)$ (9)

Maxwell equations in 4D tensorial notation

 ${-}{4}{}{\mathrm{\square }}{}\left({{A}}_{\phantom{{}}\phantom{{\mathrm{\alpha }}}}^{\phantom{{}}{\mathrm{\alpha }}}{}\left({X}\right)\right){+}{4}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({{\partial }}_{\phantom{{}}\phantom{{\mathrm{\alpha }}}}^{\phantom{{}}{\mathrm{\alpha }}}{}\left({{A}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}{}\left({X}\right)\right)\right){=}{0}$ (10)

New command Substitute

The command for doing syntactical exact-match substitutions is subs. Frequently, however, what we intend to accomplish with a substitution is more of a mathematical substitution. For different kinds of mathematical substitutions Maple has the commands algsubs, Physics:-SubstituteTensor, Physics:-SubstituteTensorIndices, Physics:-Library:-SubstituteOperator and Physics:-Library:-SubstituteMatrix, resulting in a myriad of commands, useful, however difficult to remember. A new single command, Physics:-Substitute, unifies all of those so that one does not need to remember which one to use.

Examples

$\mathrm{restart};\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}\mathrm{with}\left(\mathrm{Physics}\right):$

 • Substitutions of sub-products and sub-sums, possibly involving noncommutative objects

$\mathrm{eq}≔F+AB\left(x\right)=E\left[j\right]$

 ${\mathrm{eq}}{≔}{F}{+}{A}{}{B}{}\left({x}\right){=}{{E}}_{{j}}$ (11)

$\mathrm{ee}≔AB\left(x\right)C$

 ${\mathrm{ee}}{≔}{A}{}{B}{}\left({x}\right){}{C}$ (12)

$\mathrm{Substitute}\left(\mathrm{eq},\mathrm{ee}\right)$

 ${-}{C}{}\left({F}{-}{{E}}_{{j}}\right)$ (13)
 • Substitution of matrices and vectors taking mathematical equality into account

 ${\mathrm{eq}}{≔}{\mathrm{\alpha }}{+}\left[\begin{array}{cc}{{a}}_{{1}{,}{1}}& {{a}}_{{1}{,}{2}}\\ {{a}}_{{2}{,}{1}}& {{a}}_{{2}{,}{2}}\end{array}\right]{=}{\mathrm{\beta }}{+}\left[\begin{array}{cc}{{b}}_{{1}{,}{1}}& {{b}}_{{1}{,}{2}}\\ {{b}}_{{2}{,}{1}}& {{b}}_{{2}{,}{2}}\end{array}\right]$ (14)

 ${\mathrm{ee}}{≔}\left[\begin{array}{cc}{{a}}_{{1}{,}{1}}& {{a}}_{{1}{,}{2}}\\ {{a}}_{{2}{,}{1}}& {{a}}_{{2}{,}{2}}\end{array}\right]$ (15)

$\mathrm{Substitute}\left(\mathrm{eq},\mathrm{ee}\right)$

 ${-}{\mathrm{\alpha }}{+}{\mathrm{\beta }}{+}\left[\begin{array}{cc}{{b}}_{{1}{,}{1}}& {{b}}_{{1}{,}{2}}\\ {{b}}_{{2}{,}{1}}& {{b}}_{{2}{,}{2}}\end{array}\right]$ (16)
 • Set up some non-commutative operands for substitution

Some typical examples not handled by subs, eval or algsubs

$\mathrm{eq}≔F+AB=E$

 ${\mathrm{eq}}{≔}{F}{+}{A}{}{B}{=}{E}$ (17)

 ${\mathrm{ee}}{≔}{{ⅇ}}^{{\mathrm{\lambda }}{}{A}{}{B}{}{C}}{}{B}{}{{ⅇ}}^{{-}{\mathrm{\lambda }}{}{A}{}{B}{}{C}}$ (18)

$\mathrm{Substitute}\left(\mathrm{eq},\mathrm{ee}\right)$

 ${{ⅇ}}^{{\mathrm{\lambda }}{}\left({E}{-}{F}\right){}{C}}{}{B}{}{{ⅇ}}^{{-}{\mathrm{\lambda }}{}\left({E}{-}{F}\right){}{C}}$ (19)
 • Substituting tensorial sub-expressions

 $\mathrm{Defined objects with tensor properties}$ (20)

 ${\mathrm{eq}}{≔}{{A}}_{{\mathrm{\mu }}}{=}{{A}}_{{\mathrm{\alpha }}}{}{{F}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{{G}}_{\phantom{{}}\phantom{{\mathrm{\nu }}{,}{\mathrm{\alpha }}}}^{\phantom{{}}{\mathrm{\nu }}{,}{\mathrm{\alpha }}}$ (21)

$\mathrm{ee}≔A\left[\mathrm{\nu }\right]A\left[\mathrm{\nu }\right]$

 ${\mathrm{ee}}{≔}{{A}}_{{\mathrm{\nu }}}{}{{A}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\nu }}}$ (22)

 ${{A}}_{{\mathrm{\alpha }}}{}{{F}}_{{\mathrm{\nu }}{,}{\mathrm{\beta }}}{}{{G}}_{\phantom{{}}\phantom{{\mathrm{\beta }}{,}{\mathrm{\alpha }}}}^{\phantom{{}}{\mathrm{\beta }}{,}{\mathrm{\alpha }}}{}{{A}}_{{\mathrm{\kappa }}}{}{{F}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}{\mathrm{\lambda }}}^{\phantom{{}}{\mathrm{\nu }}\phantom{{\mathrm{\lambda }}}}{}{{G}}_{\phantom{{}}\phantom{{\mathrm{\lambda }}{,}{\mathrm{\kappa }}}}^{\phantom{{}}{\mathrm{\lambda }}{,}{\mathrm{\kappa }}}$ (23)

 $\left[{\mathrm{spinorindices}}{=}{\mathrm{lowercaselatin_is}}\right]$ (24)

 $\left\{{A}{,}{B}{,}{C}{,}{F}{,}{G}{,}{{\mathrm{\gamma }}}_{{\mathrm{\mu }}}{,}{{\mathrm{\sigma }}}_{{\mathrm{\mu }}}{,}{{T}}_{{\mathrm{\mu }}{,}{i}{,}{j}}{,}{{\partial }}_{{\mathrm{\mu }}}{,}{{g}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\epsilon }}}_{{\mathrm{\alpha }}{,}{\mathrm{\beta }}{,}{\mathrm{\mu }}{,}{\mathrm{\nu }}}\right\}$ (25)

 ${{T}}_{\phantom{{}}\phantom{{\mathrm{\alpha }}{,}{k}}{m}}^{\phantom{{}}{\mathrm{\alpha }}{,}{k}\phantom{{m}}}$ (26)
 • Substitutions of tensor indices

$\mathrm{g_}\left[\mathrm{\alpha },\mathrm{\mu }\right]A\left[\mathrm{~mu}\right]\mathrm{g_}\left[\mathrm{~alpha},\mathrm{~nu}\right]B\left[\mathrm{\nu },\mathrm{\sigma },\mathrm{~rho}\right]$

 ${{g}}_{{\mathrm{\alpha }}{,}{\mathrm{\mu }}}{}{{g}}_{\phantom{{}}\phantom{{\mathrm{\alpha }}{,}{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\alpha }}{,}{\mathrm{\nu }}}{}{{A}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}{}{{B}}_{{\mathrm{\nu }}{,}{\mathrm{\sigma }}\phantom{{\mathrm{\rho }}}}^{\phantom{{\mathrm{\nu }}}\phantom{{,}{\mathrm{\sigma }}}{\mathrm{\rho }}}$ (27)

 $\left[\left\{{\mathrm{\alpha }}{,}{\mathrm{\mu }}{,}{\mathrm{\nu }}\right\}\right]{,}\left\{{\mathrm{\sigma }}{,}{\mathrm{~rho}}\right\}$ (28)

 ${{g}}_{{\mathrm{\beta }}{,}{\mathrm{\delta }}}{}{{g}}_{\phantom{{}}\phantom{{\mathrm{\beta }}{,}{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\beta }}{,}{\mathrm{\nu }}}{}{{A}}_{\phantom{{}}\phantom{{\mathrm{\delta }}}}^{\phantom{{}}{\mathrm{\delta }}}{}{{B}}_{{\mathrm{\nu }}{,}{\mathrm{\rho }}\phantom{{\mathrm{\rho }}}}^{\phantom{{\mathrm{\nu }}}\phantom{{,}{\mathrm{\rho }}}{\mathrm{\rho }}}$ (29)

New command StandardModel:-Lagrangian

One of the distinctive aspects of the Standard Model is the complexity of its Lagrangian. In this context, the new StandardModel:-Lagrangian returns the Lagrangian of the model after symmetry breaking, optionally restricted to only the interaction terms, or only one of its QED, QCD or electroweak sectors, or only one of the different sub-terms involved in the electroweak part; all of that with the covariant derivatives, and sums over leptons and quarks optionally expanded.

The algebraic expressions returned by Lagrangian are fully computable, so you can use them as starting point to construct other Lagrangians (add or subtract terms), or the Action and related field equations (see d_, D_ for covariant derivatives, diff and Fundiff for functional differentiation), or to compute scattering amplitudes (see FeynmanDiagrams and FeynmanIntegral).

Examples

$\mathrm{restart};\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}\mathrm{with}\left(\mathrm{Physics}\right):\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}\mathrm{with}\left(\mathrm{StandardModel}\right)$

 ${}\mathrm{_______________________________________________________}$
 $\mathrm{Setting}\mathrm{lowercaselatin_is}\mathrm{letters to represent}\mathrm{Dirac spinor}\mathrm{indices}$
 $\mathrm{Setting}\mathrm{lowercaselatin_ah}\mathrm{letters to represent}\mathrm{SU\left(3\right) adjoint representation, \left(1..8\right)}\mathrm{indices}$
 $\mathrm{Setting}\mathrm{uppercaselatin_ah}\mathrm{letters to represent}\mathrm{SU\left(3\right) fundamental representation, \left(1..3\right)}\mathrm{indices}$
 $\mathrm{Setting}\mathrm{uppercaselatin_is}\mathrm{letters to represent}\mathrm{SU\left(2\right) adjoint representation, \left(1..3\right)}\mathrm{indices}$
 $\mathrm{Setting}\mathrm{uppercasegreek}\mathrm{letters to represent}\mathrm{SU\left(2\right) fundamental representation, \left(1..2\right)}\mathrm{indices}$
 ${}\mathrm{_______________________________________________________}$
 $\mathrm{Defined as the electron, muon and tau leptons and corresponding neutrinos:}{{\mathrm{e}}}_{{j}},{{\mathrm{\mu }}}_{{j}},{{\mathrm{\tau }}}_{{j}},{{{\mathrm{\nu }}}^{\left({\mathrm{e}}\right)}}_{{j}},{{{\mathrm{\nu }}}^{\left({\mathrm{\mu }}\right)}}_{{j}},{{{\mathrm{\nu }}}^{\left({\mathrm{\tau }}\right)}}_{{j}}$
 $\mathrm{Defined as the up, charm, top, down, strange and bottom quarks:}{{\mathrm{u}}}_{{A}{,}{j}},{{\mathrm{c}}}_{{A}{,}{j}},{{\mathrm{t}}}_{{A}{,}{j}},{{\mathrm{d}}}_{{A}{,}{j}},{{\mathrm{s}}}_{{A}{,}{j}},{{\mathrm{b}}}_{{A}{,}{j}}$
 $\mathrm{Defined as gauge tensors:}{{\mathrm{B}}}_{{\mathrm{\mu }}},{{\mathrm{𝔹}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}},{{\mathrm{A}}}_{{\mathrm{\mu }}},{{\mathrm{𝔽}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}},{{\mathrm{W}}}_{{\mathrm{\mu }}{,}{J}},{{\mathrm{𝕎}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}{,}{J}},{{{\mathrm{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}},{{{\mathrm{𝕎}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}},{{{\mathrm{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}},{{{\mathrm{𝕎}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}},{{\mathrm{Z}}}_{{\mathrm{\mu }}},{{\mathrm{ℤ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}},{{\mathrm{G}}}_{{\mathrm{\mu }}{,}{a}},{{\mathrm{𝔾}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}{,}{a}}$
 $\mathrm{Defined as Gell-Mann \left(Glambda\right), Pauli \left(Psigma\right) and Dirac \left(Dgamma\right) matrices:}{{\mathrm{\lambda }}}_{{a}},{{\mathrm{\sigma }}}_{{J}},{{\mathrm{\gamma }}}_{{\mathrm{\mu }}}$
 $\mathrm{Defined as the electric, weak and strong coupling constants:}\mathrm{g__e},\mathrm{g__w},\mathrm{g__s}$
 $\mathrm{Defined as the charge in units of |}\mathrm{g__e}\mathrm{| for 1\right) the electron, muon and tauon, 2\right) the up, charm and top, and 3\right) the down, strange and bottom:}\mathrm{q__e}={-1},\mathrm{q__u}=\frac{{2}}{{3}},\mathrm{q__d}={-}\frac{{1}}{{3}}$
 $\mathrm{Defined as the weak isospin for 1\right) the electron, muon and tauon, 2\right) the up, charm and top, 3\right) the down, strange and bottom, and 4\right) all the neutrinos:}\mathrm{I__e}={-}\frac{{1}}{{2}},\mathrm{I__u}=\frac{{1}}{{2}},\mathrm{I__d}={-}\frac{{1}}{{2}},\mathrm{I__n}=\frac{{1}}{{2}}$
 $\mathrm{You can use the active form without the % prefix, or the \text{'}value\text{'} command to give the corresponding value to any of the inert representations}\mathrm{q__e},\mathrm{q__u},\mathrm{q__d},\mathrm{I__e},\mathrm{I__u},\mathrm{I__d},\mathrm{I__n}$
 ${}\mathrm{_______________________________________________________}$
 ${}\mathrm{Default differentiation variables for d_, D_ and dAlembertian are:}{}\left\{X=\left(x{,}y{,}z{,}t\right)\right\}$
 $\mathrm{Minkowski spacetime with signatre}\left(\mathrm{- - - +}\right)$
 ${}\mathrm{_______________________________________________________}$
 $\left[\mathrm{I__d}{,}\mathrm{I__e}{,}\mathrm{I__n}{,}\mathrm{I__u}{,}\mathrm{q__d}{,}\mathrm{q__e}{,}\mathrm{q__u}{,}{\mathrm{BField}}{,}{\mathrm{BFieldStrength}}{,}{\mathrm{Bottom}}{,}{\mathrm{CKM}}{,}{\mathrm{Charm}}{,}{\mathrm{Down}}{,}{\mathrm{ElectromagneticField}}{,}{\mathrm{ElectromagneticFieldStrength}}{,}{\mathrm{Electron}}{,}{\mathrm{ElectronNeutrino}}{,}{\mathrm{FSU3}}{,}{\mathrm{Glambda}}{,}{\mathrm{GluonField}}{,}{\mathrm{GluonFieldStrength}}{,}{\mathrm{HiggsBoson}}{,}{\mathrm{Lagrangian}}{,}{\mathrm{Muon}}{,}{\mathrm{MuonNeutrino}}{,}{\mathrm{Strange}}{,}{\mathrm{Tauon}}{,}{\mathrm{TauonNeutrino}}{,}{\mathrm{Top}}{,}{\mathrm{Up}}{,}{\mathrm{WField}}{,}{\mathrm{WFieldStrength}}{,}{\mathrm{WMinusField}}{,}{\mathrm{WMinusFieldStrength}}{,}{\mathrm{WPlusField}}{,}{\mathrm{WPlusFieldStrength}}{,}{\mathrm{WeinbergAngle}}{,}{\mathrm{ZField}}{,}{\mathrm{ZFieldStrength}}{,}\mathrm{g__e}{,}\mathrm{g__s}{,}\mathrm{g__w}\right]$ (30)

The massless fields of the model are the electromagnetic and gluon fields and the three neutrinos

 $\left[{\mathrm{masslessfields}}{=}\left\{{\mathbf{G}}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}{,}{\mathbf{A}}{,}{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}\right\}\right]$ (31)

The Leptons and Quarks of the model are

 $\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}{,}{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}\right]$ (32)

 $\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}{,}{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]$ (33)

The Gauge fields, and their related field strengths displayed with Open Face type fonts

 $\left[{\mathbf{A}}{,}{\mathbf{𝔽}}{,}{\mathbf{B}}{,}{\mathbf{𝔹}}{,}{\mathbf{W}}{,}{\mathbf{𝕎}}{,}{\mathbf{G}}{,}{\mathbf{𝔾}}{,}{{\mathbf{W}}}^{{\mathrm{-}}}{,}{{\mathbf{𝕎}}}^{{\mathrm{-}}}{,}{{\mathbf{W}}}^{{\mathrm{+}}}{,}{{\mathbf{𝕎}}}^{{\mathrm{+}}}{,}{\mathbf{Z}}{,}{\mathbf{ℤ}}\right]$ (34)

To represent the interaction Lagrangians for the QCD and electroweak sectors as sums over leptons and quarks, all of them fermions, it is useful to introduce four anticommutative prefixes, used below as summation indices in the formulas

 $\left[{\mathrm{anticommutativeprefix}}{=}\left\{\mathrm{f__D}{,}\mathrm{f__L}{,}\mathrm{f__Q}{,}\mathrm{f__U}\right\}\right]$ (35)

For readability, omit from the display of formulas the functionality of all the fields entering the Standard Model (see CompactDisplay) and use the lowercase i instead of the uppercase I to represent the imaginary unit

The Lagrangian of the whole Standard Model after symmetry breaking, in its most compact form:

$\mathrm{Lagrangian}\left(\right)$

 ${\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}{,}{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}\left({i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}{{▿}}_{{\mathrm{\mu }}}{-}{{m}}_{\mathrm{f__Q}}{}{{\mathrm{\delta }}}_{{j}{,}{k}}\right){}{\mathrm{f__Q}}_{{A}{,}{k}}{-}\frac{{{\mathbf{𝔾}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}{,}{a}}^{{2}}}{{4}}{-}\frac{{{\mathbf{𝔽}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}^{{2}}}{{4}}{-}\frac{{{{\mathbf{𝕎}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{{{\mathbf{𝕎}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}}{{2}}{+}{{m}}_{{\mathbf{W}}}^{{2}}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{-}\frac{{{\mathbf{ℤ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}^{{2}}}{{4}}{+}\frac{{{m}}_{{\mathbf{Z}}}^{{2}}{}{{\mathbf{Z}}}_{{\mathrm{\mu }}}^{{2}}}{{2}}{+}\frac{{{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathbf{\Phi }}\right)}^{{2}}}{{2}}{-}\frac{{{m}}_{{\mathbf{\Phi }}}^{{2}}{}{{\mathbf{\Phi }}}^{{2}}}{{2}}{+}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}\left({i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathrm{f__L}}_{{k}}\right){-}{{m}}_{\mathrm{f__L}}{}{\mathrm{f__L}}_{{j}}\right){+}{\sum }_{\mathrm{f__L}{=}\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}\right]}{}{i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathrm{f__L}}_{{k}}\right){+}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}{,}{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}\left({i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathrm{f__Q}}_{{A}{,}{k}}\right){-}{{m}}_{\mathrm{f__Q}}{}{\mathrm{f__Q}}_{{A}{,}{j}}\right){+}\mathrm{g__e}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left(\mathrm{q__e}{}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{k}}{+}\mathrm{q__u}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}{+}\mathrm{q__d}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}\right){}{{\mathbf{A}}}_{{\mathrm{\mu }}}{+}\frac{\mathrm{g__w}{}\left({\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left({{\mathrm{\delta }}}_{{k}{,}{l}}{+}{\left({{\mathrm{\gamma }}}_{{5}}\right)}_{{k}{,}{l}}\right){}\left(\mathrm{I__e}{}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{l}}{+}\mathrm{I__n}{}{\sum }_{\mathrm{f__L}{=}\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{l}}{+}\mathrm{I__u}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{l}}{+}\mathrm{I__d}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{l}}\right){-}{{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)}^{{2}}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left(\mathrm{q__e}{}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{k}}{+}\mathrm{q__u}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}{+}\mathrm{q__d}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}\right)\right){}{{\mathbf{Z}}}_{{\mathrm{\mu }}}}{{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)}{-}\frac{\mathrm{g__w}{}\sqrt{{2}}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left({{\mathrm{\delta }}}_{{k}{,}{l}}{+}{\left({{\mathrm{\gamma }}}_{{5}}\right)}_{{k}{,}{l}}\right){}\left(\left({\sum }_{\mathrm{f__D}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{\sum }_{\mathrm{f__U}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}{{\mathbf{𝕄}}}_{\mathrm{f__U}{,}\mathrm{f__D}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__U}}_{{A}{,}{j}}}{}{\mathrm{f__D}}_{{A}{,}{l}}{+}{\sum }_{\mathrm{f__L}{=}\left[\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{\mathbf{e}}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{\mathbf{\mu }}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}{,}{\mathbf{\tau }}\right]\right]}{}\stackrel{{&conjugate0;}}{{\left({\mathrm{f__L}}_{{1}}\right)}_{{j}}{}\left({X}\right)}{}{\left({\mathrm{f__L}}_{{2}}\right)}_{{l}}{}\left({X}\right)\right){}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{+}\left({\sum }_{\mathrm{f__D}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{\sum }_{\mathrm{f__U}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{\mathrm{f__U}{,}\mathrm{f__D}}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__D}}_{{A}{,}{j}}}{}{\mathrm{f__U}}_{{A}{,}{l}}{+}{\sum }_{\mathrm{f__L}{=}\left[\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{\mathbf{e}}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{\mathbf{\mu }}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}{,}{\mathbf{\tau }}\right]\right]}{}\stackrel{{&conjugate0;}}{{\left({\mathrm{f__L}}_{{2}}\right)}_{{j}}{}\left({X}\right)}{}{\left({\mathrm{f__L}}_{{1}}\right)}_{{l}}{}\left({X}\right)\right){}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}\right)}{{2}}{-}\frac{\mathrm{g__w}{}{{m}}_{{\mathbf{\Phi }}}^{{2}}{}\left({{\mathbf{\Phi }}}^{{3}}{+}\frac{{{\mathbf{\Phi }}}^{{4}}}{{8}{}{{m}}_{{\mathbf{W}}}}\right)}{{4}{}{{m}}_{{\mathbf{W}}}}{+}\left(\frac{\mathrm{g__w}{}{\mathbf{\Phi }}}{{{m}}_{{\mathbf{W}}}}{+}\frac{{\mathrm{g__w}}^{{2}}{}{{\mathbf{\Phi }}}^{{2}}}{{4}{}{{m}}_{{\mathbf{W}}}^{{2}}}\right){}\left({{m}}_{{\mathbf{W}}}^{{2}}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{+}\frac{{{{\mathbf{Z}}}_{{\mathrm{\mu }}}}^{{2}}{}{{m}}_{{\mathbf{Z}}}^{{2}}}{{2}}\right){-}{i}{}\mathrm{g__w}{}\left(\left({{{\mathbf{𝕎}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{-}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{𝕎}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}\right){}\left({{\mathbf{A}}}_{{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right){+}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}\left({{\mathbf{𝔽}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{ℤ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)\right){-}\frac{{\mathrm{g__w}}^{{2}}{}\left(\left({2}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{+}{\left({{\mathbf{A}}}_{{\mathrm{\mu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\mu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)}^{{2}}\right){}\left({2}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\nu }}}{+}{\left({{\mathbf{A}}}_{{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)}^{{2}}\right){+}{\left({{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\nu }}}{+}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{+}\left({{\mathbf{A}}}_{{\mathrm{\mu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\mu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right){}\left({{\mathbf{A}}}_{{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)\right)}^{{2}}\right)}{{4}}{-}\frac{\mathrm{g__w}{}\left({\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}{,}{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}\right]}{}{{m}}_{\mathrm{f__L}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{j}}{+}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}{,}{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{{m}}_{\mathrm{f__Q}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{j}}\right){}{\mathbf{\Phi }}}{{2}{}{{m}}_{{\mathbf{W}}}}$ (36)

In the output above we see, among other things, the ${\mathrm{\gamma }}_{5}$ Dirac matrix, and the Cabibbo - Kobayashi - Maskawa matrix $\mathbf{𝕄}$, and the tensor indices of different kinds all explicit. See StandardModel for the notational conventions used, which are standard in the literature but for a few things, like a sign in the definition of ${\mathrm{\gamma }}_{5}$, that depend on the reference.

The Quantum Electrodynamics (QED) Lagrangian

The simplest sector of this Lagrangian (8) is the QED one

 $\stackrel{{&conjugate0;}}{{{\mathbf{e}}}_{{j}}}{}\left({i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}{{▿}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}{-}{{m}}_{{\mathbf{e}}}{}{{\mathrm{\delta }}}_{{j}{,}{k}}\right){}{{\mathbf{e}}}_{{k}}{-}\frac{{{\mathbf{𝔽}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{{\mathbf{𝔽}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}{,}{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\mu }}{,}{\mathrm{\nu }}}}{{4}}$ (37)

The applied form can be obtained using the Library command ApplyProductsOfDifferentialOperators over the output (9) or passing the optional argument applied

 $\stackrel{{&conjugate0;}}{{{\mathbf{e}}}_{{j}}}{}\left({i}{}{{▿}}_{{\mathrm{\mu }}}{}\left({{\mathbf{e}}}_{{k}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{-}{{m}}_{{\mathbf{e}}}{}{{\mathrm{\delta }}}_{{j}{,}{k}}{}{{\mathbf{e}}}_{{k}}\right){-}\frac{{{\mathbf{𝔽}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{{\mathbf{𝔽}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}{,}{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\mu }}{,}{\mathrm{\nu }}}}{{4}}$ (38)

Only the interaction part of this Lagrangian is relevant when computing scattering amplitudes. To get that part, you can either expand the covariant derivative operator or or pass the optional keyword expanded, in which case also the trace of $\mathrm{𝔽__μ,ν}$ gets expanded

$\mathrm{Lagrangian}\left(\mathrm{QED},\mathrm{expanded}\right)$

 ${i}{}\stackrel{{&conjugate0;}}{{{\mathbf{e}}}_{{j}}}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{e}}}_{{k}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{-}\mathrm{g__e}{}\stackrel{{&conjugate0;}}{{{\mathbf{e}}}_{{j}}}{}{{\mathbf{e}}}_{{k}}{}{{\mathbf{A}}}_{{\mathrm{\mu }}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{-}{{m}}_{{\mathbf{e}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{e}}}_{{j}}}{}{{\mathbf{e}}}_{{j}}{-}\frac{\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{A}}}_{{\mathrm{\nu }}}\right){-}{{\partial }}_{{\mathrm{\nu }}}{}\left({{\mathbf{A}}}_{{\mathrm{\mu }}}\right)\right){}\left({{\partial }}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}{}\left({{\mathbf{A}}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\nu }}}\right){-}{{\partial }}_{\phantom{{}}\phantom{{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\nu }}}{}\left({{\mathbf{A}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)\right)}{{4}}$ (39)

$\mathrm{remove}\left(\mathrm{has},,\left[\mathrm{d_},m\right]\right)$

 ${-}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\mathrm{g__e}{}\stackrel{{&conjugate0;}}{{{\mathbf{e}}}_{{j}}}{}{{\mathbf{e}}}_{{k}}{}{{\mathbf{A}}}_{{\mathrm{\mu }}}$ (40)

or simpler: pass the keyword interaction

 ${-}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\mathrm{g__e}{}\stackrel{{&conjugate0;}}{{{\mathbf{e}}}_{{j}}}{}{{\mathbf{e}}}_{{k}}{}{{\mathbf{A}}}_{{\mathrm{\mu }}}$ (41)

All the algebraic expressions returned by Lagrangian are fully computable in that further calculations can proceed starting from them. For example (see FeynmanDiagrams), this is the self-energy of the electron

 ${-}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{\int }\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{-}\frac{{\left({{\mathbit{u}}}_{{\mathbf{e}}}\right)}_{{l}}{}\left({\stackrel{{\to }}{{P}}}_{{1}}\right){}\stackrel{{&conjugate0;}}{{\left({{\mathbit{u}}}_{{\mathbf{e}}}\right)}_{{m}}{}\left({\stackrel{{\to }}{{P}}}_{{2}}\right)}{}{\mathrm{g__e}}^{{2}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\alpha }}}}^{\phantom{{}}{\mathrm{\alpha }}}\right)}_{{m}{,}{n}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\nu }}}\right)}_{{p}{,}{l}}{}\left(\left({\mathrm{P__1}}_{{\mathrm{\beta }}}{+}{\mathrm{p__2}}_{{\mathrm{\beta }}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\beta }}}}^{\phantom{{}}{\mathrm{\beta }}}\right)}_{{n}{,}{p}}{+}{{m}}_{{\mathbf{e}}}{}{{\mathrm{\delta }}}_{{n}{,}{p}}\right){}{{g}}_{{\mathrm{\alpha }}{,}{\mathrm{\nu }}}{}{\mathrm{\delta }}{}\left({-}\mathrm{P__2}{+}\mathrm{P__1}\right)}{{8}{}{{\mathrm{\pi }}}^{{3}}{}\left({\left(\mathrm{P__1}{+}\mathrm{p__2}\right)}^{{2}}{-}{{m}}_{{\mathbf{e}}}^{{2}}{+}{i}{}{\mathbf{\epsilon }}\right){}\left({\mathrm{p__2}}^{{2}}{+}{i}{}{\mathbf{\epsilon }}\right)}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{\mathrm{p__2}}^{{4}}$ (42)



The Quantum Chromodynamics (QCD) Lagrangian

Next in complexity is the QCD Lagrangian

 ${\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}{,}{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}\left({i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}{{▿}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}{-}{{m}}_{\mathrm{f__Q}}{}{{\mathrm{\delta }}}_{{j}{,}{k}}\right){}{\mathrm{f__Q}}_{{A}{,}{k}}{-}\frac{{{\mathbf{𝔾}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}{,}{a}}{}{{\mathbf{𝔾}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{a}}^{\phantom{{}}{\mathrm{\mu }}{,}{\mathrm{\nu }}\phantom{{a}}}}{{4}}$ (43)

 $\stackrel{{&conjugate0;}}{{{\mathbf{u}}}_{{A}{,}{j}}}{}\left({i}{}\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{u}}}_{{A}{,}{k}}\right){-}\frac{{i}{}\mathrm{g__s}{}{\left({{\mathrm{\lambda }}}_{{a}}\right)}_{{A}{,}{B}}{}{{\mathbf{u}}}_{{B}{,}{k}}{}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}}{{2}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{-}{{m}}_{{\mathbf{u}}}{}{{\mathrm{\delta }}}_{{j}{,}{k}}{}{{\mathbf{u}}}_{{A}{,}{k}}\right){+}\stackrel{{&conjugate0;}}{{{\mathbf{c}}}_{{A}{,}{j}}}{}\left({i}{}\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{c}}}_{{A}{,}{k}}\right){-}\frac{{i}{}\mathrm{g__s}{}{\left({{\mathrm{\lambda }}}_{{a}}\right)}_{{A}{,}{B}}{}{{\mathbf{c}}}_{{B}{,}{k}}{}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}}{{2}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{-}{{m}}_{{\mathbf{c}}}{}{{\mathrm{\delta }}}_{{j}{,}{k}}{}{{\mathbf{c}}}_{{A}{,}{k}}\right){+}\stackrel{{&conjugate0;}}{{{\mathbf{t}}}_{{A}{,}{j}}}{}\left({i}{}\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{t}}}_{{A}{,}{k}}\right){-}\frac{{i}{}\mathrm{g__s}{}{\left({{\mathrm{\lambda }}}_{{a}}\right)}_{{A}{,}{B}}{}{{\mathbf{t}}}_{{B}{,}{k}}{}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}}{{2}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{-}{{m}}_{{\mathbf{t}}}{}{{\mathrm{\delta }}}_{{j}{,}{k}}{}{{\mathbf{t}}}_{{A}{,}{k}}\right){+}\stackrel{{&conjugate0;}}{{{\mathbf{d}}}_{{A}{,}{j}}}{}\left({i}{}\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{d}}}_{{A}{,}{k}}\right){-}\frac{{i}{}\mathrm{g__s}{}{\left({{\mathrm{\lambda }}}_{{a}}\right)}_{{A}{,}{B}}{}{{\mathbf{d}}}_{{B}{,}{k}}{}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}}{{2}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{-}{{m}}_{{\mathbf{d}}}{}{{\mathrm{\delta }}}_{{j}{,}{k}}{}{{\mathbf{d}}}_{{A}{,}{k}}\right){+}\stackrel{{&conjugate0;}}{{{\mathbf{s}}}_{{A}{,}{j}}}{}\left({i}{}\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{s}}}_{{A}{,}{k}}\right){-}\frac{{i}{}\mathrm{g__s}{}{\left({{\mathrm{\lambda }}}_{{a}}\right)}_{{A}{,}{B}}{}{{\mathbf{s}}}_{{B}{,}{k}}{}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}}{{2}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{-}{{m}}_{{\mathbf{s}}}{}{{\mathrm{\delta }}}_{{j}{,}{k}}{}{{\mathbf{s}}}_{{A}{,}{k}}\right){+}\stackrel{{&conjugate0;}}{{{\mathbf{b}}}_{{A}{,}{j}}}{}\left({i}{}\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{b}}}_{{A}{,}{k}}\right){-}\frac{{i}{}\mathrm{g__s}{}{\left({{\mathrm{\lambda }}}_{{a}}\right)}_{{A}{,}{B}}{}{{\mathbf{b}}}_{{B}{,}{k}}{}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}}{{2}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{-}{{m}}_{{\mathbf{b}}}{}{{\mathrm{\delta }}}_{{j}{,}{k}}{}{{\mathbf{b}}}_{{A}{,}{k}}\right){-}\frac{\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{G}}}_{{\mathrm{\nu }}{,}{a}}\right){-}{{\partial }}_{{\mathrm{\nu }}}{}\left({{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}\right){+}\mathrm{g__s}{}{{{f}}_{{\mathrm{su3}}}}_{{a}{,}{b}{,}{c}}{}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{b}}{}{{\mathbf{G}}}_{{\mathrm{\nu }}{,}{c}}\right){}\left({{\partial }}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}{}\left({{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}{a}}^{\phantom{{}}{\mathrm{\nu }}\phantom{{a}}}\right){-}{{\partial }}_{\phantom{{}}\phantom{{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\nu }}}{}\left({{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}{a}}^{\phantom{{}}{\mathrm{\mu }}\phantom{{a}}}\right){+}\mathrm{g__s}{}{{{f}}_{{\mathrm{su3}}}}_{{a}{,}{d}{,}{e}}{}{{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}{d}}^{\phantom{{}}{\mathrm{\mu }}\phantom{{d}}}{}{{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}{e}}^{\phantom{{}}{\mathrm{\nu }}\phantom{{e}}}\right)}{{4}}$ (44)

For computing scattering amplitudes, only the interaction part of this Lagrangian is relevant

 $\frac{\mathrm{g__s}{}{\left({{\mathrm{\lambda }}}_{{a}}\right)}_{{A}{,}{B}}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}{,}{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{B}{,}{k}}{}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}}{{2}}{-}\mathrm{g__s}{}{{{f}}_{{\mathrm{su3}}}}_{{a}{,}{b}{,}{c}}{}\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{G}}}_{{\mathrm{\nu }}{,}{a}}\right){}{{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}{b}}^{\phantom{{}}{\mathrm{\mu }}\phantom{{b}}}{}{{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}{c}}^{\phantom{{}}{\mathrm{\nu }}\phantom{{c}}}{-}\frac{\mathrm{g__s}{}{{{f}}_{{\mathrm{su3}}}}_{{c}{,}{d}{,}{e}}{}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}{}{{\mathbf{G}}}_{{\mathrm{\alpha }}{,}{b}}{}{{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}{e}}^{\phantom{{}}{\mathrm{\mu }}\phantom{{e}}}{}{{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\alpha }}}{d}}^{\phantom{{}}{\mathrm{\alpha }}\phantom{{d}}}}{{4}}\right)$ (45)

 $\frac{\mathrm{g__s}{}{\left({{\mathrm{\lambda }}}_{{a}}\right)}_{{A}{,}{B}}{}\left(\stackrel{{&conjugate0;}}{{{\mathbf{u}}}_{{A}{,}{j}}}{}{{\mathbf{u}}}_{{B}{,}{k}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{c}}}_{{A}{,}{j}}}{}{{\mathbf{c}}}_{{B}{,}{k}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{t}}}_{{A}{,}{j}}}{}{{\mathbf{t}}}_{{B}{,}{k}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{d}}}_{{A}{,}{j}}}{}{{\mathbf{d}}}_{{B}{,}{k}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{s}}}_{{A}{,}{j}}}{}{{\mathbf{s}}}_{{B}{,}{k}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{b}}}_{{A}{,}{j}}}{}{{\mathbf{b}}}_{{B}{,}{k}}\right){}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}}{{2}}{-}\mathrm{g__s}{}{{{f}}_{{\mathrm{su3}}}}_{{a}{,}{b}{,}{c}}{}\left({{\partial }}_{{\mathrm{\mu }}}{}\left({{\mathbf{G}}}_{{\mathrm{\nu }}{,}{a}}\right){}{{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}{b}}^{\phantom{{}}{\mathrm{\mu }}\phantom{{b}}}{}{{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}{c}}^{\phantom{{}}{\mathrm{\nu }}\phantom{{c}}}{-}\frac{\mathrm{g__s}{}{{{f}}_{{\mathrm{su3}}}}_{{c}{,}{d}{,}{e}}{}{{\mathbf{G}}}_{{\mathrm{\mu }}{,}{a}}{}{{\mathbf{G}}}_{{\mathrm{\alpha }}{,}{b}}{}{{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}{e}}^{\phantom{{}}{\mathrm{\mu }}\phantom{{e}}}{}{{\mathbf{G}}}_{\phantom{{}}\phantom{{\mathrm{\alpha }}}{d}}^{\phantom{{}}{\mathrm{\alpha }}\phantom{{d}}}}{{4}}\right)$ (46)

The amplitude at tree level for the process with two incoming and two outgoing Up quarks (particle and antiparticle) exchanging a gluon

 ${-}\frac{{i}{}{\left({{\mathbit{u}}}_{{\mathbf{u}}}\right)}_{{C}{,}{l}}{}\left({\stackrel{{\to }}{{P}}}_{{1}}\right){}\stackrel{{&conjugate0;}}{{\left({{\mathbit{v}}}_{{\mathbf{u}}}\right)}_{{E}{,}{m}}{}\left({\stackrel{{\to }}{{P}}}_{{2}}\right)}{}\stackrel{{&conjugate0;}}{{\left({{\mathbit{u}}}_{{\mathbf{u}}}\right)}_{{F}{,}{n}}{}\left({\stackrel{{\to }}{{P}}}_{{3}}\right)}{}{\left({{\mathbit{v}}}_{{\mathbf{u}}}\right)}_{{G}{,}{p}}{}\left({\stackrel{{\to }}{{P}}}_{{4}}\right){}{\mathrm{g__s}}^{{2}}{}{\left({{\mathrm{\lambda }}}_{{g}}\right)}_{{F}{,}{G}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\kappa }}}}^{\phantom{{}}{\mathrm{\kappa }}}\right)}_{{n}{,}{p}}{}{\left({{\mathrm{\lambda }}}_{{f}}\right)}_{{E}{,}{C}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\beta }}}}^{\phantom{{}}{\mathrm{\beta }}}\right)}_{{m}{,}{l}}{}{{g}}_{{\mathrm{\beta }}{,}{\mathrm{\kappa }}}{}{{\mathrm{\delta }}}_{{f}{,}{g}}{}{\mathrm{\delta }}{}\left({-}{\mathrm{P__3}}_{\phantom{{}}\phantom{{\mathrm{\lambda }}}}^{\phantom{{}}{\mathrm{\lambda }}}{-}{\mathrm{P__4}}_{\phantom{{}}\phantom{{\mathrm{\lambda }}}}^{\phantom{{}}{\mathrm{\lambda }}}{+}{\mathrm{P__1}}_{\phantom{{}}\phantom{{\mathrm{\lambda }}}}^{\phantom{{}}{\mathrm{\lambda }}}{+}{\mathrm{P__2}}_{\phantom{{}}\phantom{{\mathrm{\lambda }}}}^{\phantom{{}}{\mathrm{\lambda }}}\right)}{{16}{}{{\mathrm{\pi }}}^{{2}}{}\left(\left({\mathrm{P__1}}_{{\mathrm{\sigma }}}{+}{\mathrm{P__2}}_{{\mathrm{\sigma }}}\right){}\left({\mathrm{P__1}}_{\phantom{{}}\phantom{{\mathrm{\sigma }}}}^{\phantom{{}}{\mathrm{\sigma }}}{+}{\mathrm{P__2}}_{\phantom{{}}\phantom{{\mathrm{\sigma }}}}^{\phantom{{}}{\mathrm{\sigma }}}\right){+}{i}{}{\mathbf{\epsilon }}\right)}{+}\frac{{i}{}{\left({{\mathbit{u}}}_{{\mathbf{u}}}\right)}_{{C}{,}{l}}{}\left({\stackrel{{\to }}{{P}}}_{{1}}\right){}\stackrel{{&conjugate0;}}{{\left({{\mathbit{v}}}_{{\mathbf{u}}}\right)}_{{E}{,}{m}}{}\left({\stackrel{{\to }}{{P}}}_{{2}}\right)}{}\stackrel{{&conjugate0;}}{{\left({{\mathbit{u}}}_{{\mathbf{u}}}\right)}_{{F}{,}{n}}{}\left({\stackrel{{\to }}{{P}}}_{{3}}\right)}{}{\left({{\mathbit{v}}}_{{\mathbf{u}}}\right)}_{{G}{,}{p}}{}\left({\stackrel{{\to }}{{P}}}_{{4}}\right){}{\mathrm{g__s}}^{{2}}{}{\left({{\mathrm{\lambda }}}_{{g}}\right)}_{{E}{,}{G}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\kappa }}}}^{\phantom{{}}{\mathrm{\kappa }}}\right)}_{{m}{,}{p}}{}{\left({{\mathrm{\lambda }}}_{{f}}\right)}_{{F}{,}{C}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\beta }}}}^{\phantom{{}}{\mathrm{\beta }}}\right)}_{{n}{,}{l}}{}{{g}}_{{\mathrm{\beta }}{,}{\mathrm{\kappa }}}{}{{\mathrm{\delta }}}_{{f}{,}{g}}{}{\mathrm{\delta }}{}\left({-}{\mathrm{P__3}}_{\phantom{{}}\phantom{{\mathrm{\lambda }}}}^{\phantom{{}}{\mathrm{\lambda }}}{-}{\mathrm{P__4}}_{\phantom{{}}\phantom{{\mathrm{\lambda }}}}^{\phantom{{}}{\mathrm{\lambda }}}{+}{\mathrm{P__1}}_{\phantom{{}}\phantom{{\mathrm{\lambda }}}}^{\phantom{{}}{\mathrm{\lambda }}}{+}{\mathrm{P__2}}_{\phantom{{}}\phantom{{\mathrm{\lambda }}}}^{\phantom{{}}{\mathrm{\lambda }}}\right)}{{16}{}{{\mathrm{\pi }}}^{{2}}{}\left(\left({\mathrm{P__1}}_{{\mathrm{\sigma }}}{-}{\mathrm{P__3}}_{{\mathrm{\sigma }}}\right){}\left({\mathrm{P__1}}_{\phantom{{}}\phantom{{\mathrm{\sigma }}}}^{\phantom{{}}{\mathrm{\sigma }}}{-}{\mathrm{P__3}}_{\phantom{{}}\phantom{{\mathrm{\sigma }}}}^{\phantom{{}}{\mathrm{\sigma }}}\right){+}{i}{}{\mathbf{\epsilon }}\right)}$ (47)

The Electro-Weak Lagrangian

The electroweak sector of the Standard Model Lagrangian is significantly more complicated

 ${-}\frac{{{\mathbf{𝔽}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}^{{2}}}{{4}}{-}\frac{{{{\mathbf{𝕎}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{{{\mathbf{𝕎}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}}{{2}}{+}{{m}}_{{\mathbf{W}}}^{{2}}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{-}\frac{{{\mathbf{ℤ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}^{{2}}}{{4}}{+}\frac{{{m}}_{{\mathbf{Z}}}^{{2}}{}{{\mathbf{Z}}}_{{\mathrm{\mu }}}^{{2}}}{{2}}{+}\frac{{{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathbf{\Phi }}\right)}^{{2}}}{{2}}{-}\frac{{{m}}_{{\mathbf{\Phi }}}^{{2}}{}{{\mathbf{\Phi }}}^{{2}}}{{2}}{+}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}\left({i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathrm{f__L}}_{{k}}\right){-}{{m}}_{\mathrm{f__L}}{}{\mathrm{f__L}}_{{j}}\right){+}{\sum }_{\mathrm{f__L}{=}\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}\right]}{}{i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathrm{f__L}}_{{k}}\right){+}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}{,}{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}\left({i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathrm{f__Q}}_{{A}{,}{k}}\right){-}{{m}}_{\mathrm{f__Q}}{}{\mathrm{f__Q}}_{{A}{,}{j}}\right){+}\mathrm{g__e}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left(\mathrm{q__e}{}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{k}}{+}\mathrm{q__u}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}{+}\mathrm{q__d}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}\right){}{{\mathbf{A}}}_{{\mathrm{\mu }}}{+}\frac{\mathrm{g__w}{}\left({\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left({{\mathrm{\delta }}}_{{k}{,}{l}}{+}{\left({{\mathrm{\gamma }}}_{{5}}\right)}_{{k}{,}{l}}\right){}\left(\mathrm{I__e}{}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{l}}{+}\mathrm{I__n}{}{\sum }_{\mathrm{f__L}{=}\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{l}}{+}\mathrm{I__u}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{l}}{+}\mathrm{I__d}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{l}}\right){-}{{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)}^{{2}}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left(\mathrm{q__e}{}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{k}}{+}\mathrm{q__u}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}{+}\mathrm{q__d}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}\right)\right){}{{\mathbf{Z}}}_{{\mathrm{\mu }}}}{{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)}{-}\frac{\mathrm{g__w}{}\sqrt{{2}}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left({{\mathrm{\delta }}}_{{k}{,}{l}}{+}{\left({{\mathrm{\gamma }}}_{{5}}\right)}_{{k}{,}{l}}\right){}\left(\left({\sum }_{\mathrm{f__D}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{\sum }_{\mathrm{f__U}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}{{\mathbf{𝕄}}}_{\mathrm{f__U}{,}\mathrm{f__D}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__U}}_{{A}{,}{j}}}{}{\mathrm{f__D}}_{{A}{,}{l}}{+}{\sum }_{\mathrm{f__L}{=}\left[\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{\mathbf{e}}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{\mathbf{\mu }}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}{,}{\mathbf{\tau }}\right]\right]}{}\stackrel{{&conjugate0;}}{{\left({\mathrm{f__L}}_{{1}}\right)}_{{j}}{}\left({X}\right)}{}{\left({\mathrm{f__L}}_{{2}}\right)}_{{l}}{}\left({X}\right)\right){}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{+}\left({\sum }_{\mathrm{f__D}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{\sum }_{\mathrm{f__U}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{\mathrm{f__U}{,}\mathrm{f__D}}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__D}}_{{A}{,}{j}}}{}{\mathrm{f__U}}_{{A}{,}{l}}{+}{\sum }_{\mathrm{f__L}{=}\left[\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{\mathbf{e}}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{\mathbf{\mu }}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}{,}{\mathbf{\tau }}\right]\right]}{}\stackrel{{&conjugate0;}}{{\left({\mathrm{f__L}}_{{2}}\right)}_{{j}}{}\left({X}\right)}{}{\left({\mathrm{f__L}}_{{1}}\right)}_{{l}}{}\left({X}\right)\right){}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}\right)}{{2}}{-}\frac{\mathrm{g__w}{}{{m}}_{{\mathbf{\Phi }}}^{{2}}{}\left({{\mathbf{\Phi }}}^{{3}}{+}\frac{{{\mathbf{\Phi }}}^{{4}}}{{8}{}{{m}}_{{\mathbf{W}}}}\right)}{{4}{}{{m}}_{{\mathbf{W}}}}{+}\left(\frac{\mathrm{g__w}{}{\mathbf{\Phi }}}{{{m}}_{{\mathbf{W}}}}{+}\frac{{\mathrm{g__w}}^{{2}}{}{{\mathbf{\Phi }}}^{{2}}}{{4}{}{{m}}_{{\mathbf{W}}}^{{2}}}\right){}\left({{m}}_{{\mathbf{W}}}^{{2}}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{+}\frac{{{{\mathbf{Z}}}_{{\mathrm{\mu }}}}^{{2}}{}{{m}}_{{\mathbf{Z}}}^{{2}}}{{2}}\right){-}{i}{}\mathrm{g__w}{}\left(\left({{{\mathbf{𝕎}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{-}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{𝕎}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}\right){}\left({{\mathbf{A}}}_{{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right){+}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}\left({{\mathbf{𝔽}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{ℤ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)\right){-}\frac{{\mathrm{g__w}}^{{2}}{}\left(\left({2}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{+}{\left({{\mathbf{A}}}_{{\mathrm{\mu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\mu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)}^{{2}}\right){}\left({2}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\nu }}}{+}{\left({{\mathbf{A}}}_{{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)}^{{2}}\right){+}{\left({{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\nu }}}{+}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{+}\left({{\mathbf{A}}}_{{\mathrm{\mu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\mu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right){}\left({{\mathbf{A}}}_{{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)\right)}^{{2}}\right)}{{4}}{-}\frac{\mathrm{g__w}{}\left({\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}{,}{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}\right]}{}{{m}}_{\mathrm{f__L}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{j}}{+}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}{,}{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{{m}}_{\mathrm{f__Q}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{j}}\right){}{\mathbf{\Phi }}}{{2}{}{{m}}_{{\mathbf{W}}}}$ (48)

To decipher this result it is useful to see the structure of physically recognizable terms. For that purpose, you can use the keyword showterms

 $\mathrm{L__K}{+}\mathrm{L__N}{+}\mathrm{L__C}{+}\mathrm{L__H}{+}\mathrm{L__HV}{+}\mathrm{L__WWV}{+}\mathrm{L__WWVV}{+}\mathrm{L__Y}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{\mathbf{where}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left[\mathrm{L__K}{=}{-}\frac{{{\mathbf{𝔽}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}^{{2}}}{{4}}{-}\frac{{{{\mathbf{𝕎}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{{{\mathbf{𝕎}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}}{{2}}{+}{{m}}_{{\mathbf{W}}}^{{2}}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{-}\frac{{{\mathbf{ℤ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}^{{2}}}{{4}}{+}\frac{{{m}}_{{\mathbf{Z}}}^{{2}}{}{{\mathbf{Z}}}_{{\mathrm{\mu }}}^{{2}}}{{2}}{+}\frac{{{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathbf{\Phi }}\right)}^{{2}}}{{2}}{-}\frac{{{m}}_{{\mathbf{\Phi }}}^{{2}}{}{{\mathbf{\Phi }}}^{{2}}}{{2}}{+}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}\left({i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathrm{f__L}}_{{k}}\right){-}{{m}}_{\mathrm{f__L}}{}{\mathrm{f__L}}_{{j}}\right){+}{\sum }_{\mathrm{f__L}{=}\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}\right]}{}{i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathrm{f__L}}_{{k}}\right){+}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}{,}{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}\left({i}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}{{\partial }}_{{\mathrm{\mu }}}{}\left({\mathrm{f__Q}}_{{A}{,}{k}}\right){-}{{m}}_{\mathrm{f__Q}}{}{\mathrm{f__Q}}_{{A}{,}{j}}\right){,}\mathrm{L__N}{=}\mathrm{g__e}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left(\mathrm{q__e}{}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{k}}{+}\mathrm{q__u}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}{+}\mathrm{q__d}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}\right){}{{\mathbf{A}}}_{{\mathrm{\mu }}}{+}\frac{\mathrm{g__w}{}\left({\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left({{\mathrm{\delta }}}_{{k}{,}{l}}{+}{\left({{\mathrm{\gamma }}}_{{5}}\right)}_{{k}{,}{l}}\right){}\left(\mathrm{I__e}{}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{l}}{+}\mathrm{I__n}{}{\sum }_{\mathrm{f__L}{=}\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{l}}{+}\mathrm{I__u}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{l}}{+}\mathrm{I__d}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{l}}\right){-}{{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)}^{{2}}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left(\mathrm{q__e}{}{\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{k}}{+}\mathrm{q__u}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}{+}\mathrm{q__d}{}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{k}}\right)\right){}{{\mathbf{Z}}}_{{\mathrm{\mu }}}}{{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)}{,}\mathrm{L__C}{=}{-}\frac{\mathrm{g__w}{}\sqrt{{2}}{}{\left({{\mathrm{\gamma }}}_{{\mathrm{\mu }}}\right)}_{{j}{,}{k}}{}\left({{\mathrm{\delta }}}_{{k}{,}{l}}{+}{\left({{\mathrm{\gamma }}}_{{5}}\right)}_{{k}{,}{l}}\right){}\left(\left({\sum }_{\mathrm{f__D}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{\sum }_{\mathrm{f__U}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}{{\mathbf{𝕄}}}_{\mathrm{f__U}{,}\mathrm{f__D}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__U}}_{{A}{,}{j}}}{}{\mathrm{f__D}}_{{A}{,}{l}}{+}{\sum }_{\mathrm{f__L}{=}\left[\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{\mathbf{e}}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{\mathbf{\mu }}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}{,}{\mathbf{\tau }}\right]\right]}{}\stackrel{{&conjugate0;}}{{\left({\mathrm{f__L}}_{{1}}\right)}_{{j}}{}\left({X}\right)}{}{\left({\mathrm{f__L}}_{{2}}\right)}_{{l}}{}\left({X}\right)\right){}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{+}\left({\sum }_{\mathrm{f__D}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{\sum }_{\mathrm{f__U}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{\mathrm{f__U}{,}\mathrm{f__D}}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__D}}_{{A}{,}{j}}}{}{\mathrm{f__U}}_{{A}{,}{l}}{+}{\sum }_{\mathrm{f__L}{=}\left[\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{\mathbf{e}}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{\mathbf{\mu }}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}{,}{\mathbf{\tau }}\right]\right]}{}\stackrel{{&conjugate0;}}{{\left({\mathrm{f__L}}_{{2}}\right)}_{{j}}{}\left({X}\right)}{}{\left({\mathrm{f__L}}_{{1}}\right)}_{{l}}{}\left({X}\right)\right){}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}\right)}{{2}}{,}\mathrm{L__H}{=}{-}\frac{\mathrm{g__w}{}{{m}}_{{\mathbf{\Phi }}}^{{2}}{}\left({{\mathbf{\Phi }}}^{{3}}{+}\frac{{{\mathbf{\Phi }}}^{{4}}}{{8}{}{{m}}_{{\mathbf{W}}}}\right)}{{4}{}{{m}}_{{\mathbf{W}}}}{,}\mathrm{L__HV}{=}\left(\frac{\mathrm{g__w}{}{\mathbf{\Phi }}}{{{m}}_{{\mathbf{W}}}}{+}\frac{{\mathrm{g__w}}^{{2}}{}{{\mathbf{\Phi }}}^{{2}}}{{4}{}{{m}}_{{\mathbf{W}}}^{{2}}}\right){}\left({{m}}_{{\mathbf{W}}}^{{2}}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{+}\frac{{{{\mathbf{Z}}}_{{\mathrm{\mu }}}}^{{2}}{}{{m}}_{{\mathbf{Z}}}^{{2}}}{{2}}\right){,}\mathrm{L__WWV}{=}{-i}{}\mathrm{g__w}{}\left(\left({{{\mathbf{𝕎}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{-}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{𝕎}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}\right){}\left({{\mathbf{A}}}_{{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right){+}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}\left({{\mathbf{𝔽}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{ℤ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)\right){,}\mathrm{L__WWVV}{=}{-}\frac{{\mathrm{g__w}}^{{2}}{}\left(\left({2}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{+}{\left({{\mathbf{A}}}_{{\mathrm{\mu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\mu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)}^{{2}}\right){}\left({2}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\nu }}}{+}{\left({{\mathbf{A}}}_{{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)}^{{2}}\right){+}{\left({{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\nu }}}{+}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\nu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}{+}\left({{\mathbf{A}}}_{{\mathrm{\mu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\mu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right){}\left({{\mathbf{A}}}_{{\mathrm{\nu }}}{}{\mathrm{sin}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right){-}{{\mathbf{Z}}}_{{\mathrm{\nu }}}{}{\mathrm{cos}}{}\left({{\mathbf{θ}}}_{{\mathbf{w}}}\right)\right)\right)}^{{2}}\right)}{{4}}{,}\mathrm{L__Y}{=}{-}\frac{\mathrm{g__w}{}\left({\sum }_{\mathrm{f__L}{=}\left[{\mathbf{e}}{,}{\mathbf{\mu }}{,}{\mathbf{\tau }}{,}{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}\right]}{}{{m}}_{\mathrm{f__L}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__L}}_{{j}}}{}{\mathrm{f__L}}_{{j}}{+}{\sum }_{\mathrm{f__Q}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}{,}{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{{m}}_{\mathrm{f__Q}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__Q}}_{{A}{,}{j}}}{}{\mathrm{f__Q}}_{{A}{,}{j}}\right){}{\mathbf{\Phi }}}{{2}{}{{m}}_{{\mathbf{W}}}}\right]$ (49)

In this result we see a sum of ${L}_{\mathrm{terms}}$, and after 'where' there is a list of equations with the formulas represented by each ${L}_{\mathrm{term}}$. Take from the above, for instance, only the charged current ${L}_{C}$ term that involves interaction between the leptons and the corresponding neutrinos: you can do that with the mouse, copy and paste, or using the  option of Lagrangian

 $\mathrm{L__C}{=}{-}\frac{\mathrm{g__w}{}\sqrt{{2}}{}\left({{\mathrm{\delta }}}_{{k}{,}{l}}{+}{\left({{\mathrm{\gamma }}}_{{5}}\right)}_{{k}{,}{l}}\right){}\left(\left({\sum }_{\mathrm{f__D}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{\sum }_{\mathrm{f__U}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}{{\mathbf{𝕄}}}_{\mathrm{f__U}{,}\mathrm{f__D}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__U}}_{{A}{,}{j}}}{}{\mathrm{f__D}}_{{A}{,}{l}}{+}{\sum }_{\mathrm{f__L}{=}\left[\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{\mathbf{e}}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{\mathbf{\mu }}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}{,}{\mathbf{\tau }}\right]\right]}{}\stackrel{{&conjugate0;}}{{\left({\mathrm{f__L}}_{{1}}\right)}_{{j}}{}\left({X}\right)}{}{\left({\mathrm{f__L}}_{{2}}\right)}_{{l}}{}\left({X}\right)\right){}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{+}\left({\sum }_{\mathrm{f__D}{=}\left[{\mathbf{d}}{,}{\mathbf{s}}{,}{\mathbf{b}}\right]}{}{\sum }_{\mathrm{f__U}{=}\left[{\mathbf{u}}{,}{\mathbf{c}}{,}{\mathbf{t}}\right]}{}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{\mathrm{f__U}{,}\mathrm{f__D}}}{}\stackrel{{&conjugate0;}}{{\mathrm{f__D}}_{{A}{,}{j}}}{}{\mathrm{f__U}}_{{A}{,}{l}}{+}{\sum }_{\mathrm{f__L}{=}\left[\left[{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}{,}{\mathbf{e}}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}{,}{\mathbf{\mu }}\right]{,}\left[{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}{,}{\mathbf{\tau }}\right]\right]}{}\stackrel{{&conjugate0;}}{{\left({\mathrm{f__L}}_{{2}}\right)}_{{j}}{}\left({X}\right)}{}{\left({\mathrm{f__L}}_{{1}}\right)}_{{l}}{}\left({X}\right)\right){}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}}{{2}}$ (50)

The same term in expanded form, useful for computing scattering amplitudes

 $\mathrm{L__C}{=}{-}\frac{\mathrm{g__w}{}\sqrt{{2}}{}\left({{\mathrm{\delta }}}_{{k}{,}{l}}{+}{\left({{\mathrm{\gamma }}}_{{5}}\right)}_{{k}{,}{l}}\right){}\left(\left({{\mathbf{𝕄}}}_{{\mathbf{u}}{,}{\mathbf{d}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{u}}}_{{A}{,}{j}}}{}{{\mathbf{d}}}_{{A}{,}{l}}{+}{{\mathbf{𝕄}}}_{{\mathbf{c}}{,}{\mathbf{d}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{c}}}_{{A}{,}{j}}}{}{{\mathbf{d}}}_{{A}{,}{l}}{+}{{\mathbf{𝕄}}}_{{\mathbf{t}}{,}{\mathbf{d}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{t}}}_{{A}{,}{j}}}{}{{\mathbf{d}}}_{{A}{,}{l}}{+}{{\mathbf{𝕄}}}_{{\mathbf{u}}{,}{\mathbf{s}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{u}}}_{{A}{,}{j}}}{}{{\mathbf{s}}}_{{A}{,}{l}}{+}{{\mathbf{𝕄}}}_{{\mathbf{c}}{,}{\mathbf{s}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{c}}}_{{A}{,}{j}}}{}{{\mathbf{s}}}_{{A}{,}{l}}{+}{{\mathbf{𝕄}}}_{{\mathbf{t}}{,}{\mathbf{s}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{t}}}_{{A}{,}{j}}}{}{{\mathbf{s}}}_{{A}{,}{l}}{+}{{\mathbf{𝕄}}}_{{\mathbf{u}}{,}{\mathbf{b}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{u}}}_{{A}{,}{j}}}{}{{\mathbf{b}}}_{{A}{,}{l}}{+}{{\mathbf{𝕄}}}_{{\mathbf{c}}{,}{\mathbf{b}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{c}}}_{{A}{,}{j}}}{}{{\mathbf{b}}}_{{A}{,}{l}}{+}{{\mathbf{𝕄}}}_{{\mathbf{t}}{,}{\mathbf{b}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{t}}}_{{A}{,}{j}}}{}{{\mathbf{b}}}_{{A}{,}{l}}{+}\stackrel{{&conjugate0;}}{{{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}}_{{j}}}{}{{\mathbf{e}}}_{{l}}{+}\stackrel{{&conjugate0;}}{{{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}}_{{j}}}{}{{\mathbf{\mu }}}_{{l}}{+}\stackrel{{&conjugate0;}}{{{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}}_{{j}}}{}{{\mathbf{\tau }}}_{{l}}\right){}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{+}\left(\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{{\mathbf{u}}{,}{\mathbf{d}}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{d}}}_{{A}{,}{j}}}{}{{\mathbf{u}}}_{{A}{,}{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{{\mathbf{c}}{,}{\mathbf{d}}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{d}}}_{{A}{,}{j}}}{}{{\mathbf{c}}}_{{A}{,}{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{{\mathbf{t}}{,}{\mathbf{d}}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{d}}}_{{A}{,}{j}}}{}{{\mathbf{t}}}_{{A}{,}{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{{\mathbf{u}}{,}{\mathbf{s}}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{s}}}_{{A}{,}{j}}}{}{{\mathbf{u}}}_{{A}{,}{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{{\mathbf{c}}{,}{\mathbf{s}}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{s}}}_{{A}{,}{j}}}{}{{\mathbf{c}}}_{{A}{,}{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{{\mathbf{t}}{,}{\mathbf{s}}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{s}}}_{{A}{,}{j}}}{}{{\mathbf{t}}}_{{A}{,}{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{{\mathbf{u}}{,}{\mathbf{b}}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{b}}}_{{A}{,}{j}}}{}{{\mathbf{u}}}_{{A}{,}{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{{\mathbf{c}}{,}{\mathbf{b}}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{b}}}_{{A}{,}{j}}}{}{{\mathbf{c}}}_{{A}{,}{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{𝕄}}}_{{\mathbf{t}}{,}{\mathbf{b}}}}{}\stackrel{{&conjugate0;}}{{{\mathbf{b}}}_{{A}{,}{j}}}{}{{\mathbf{t}}}_{{A}{,}{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{e}}}_{{j}}}{}{{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}}_{{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{\mu }}}_{{j}}}{}{{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}}_{{l}}{+}\stackrel{{&conjugate0;}}{{{\mathbf{\tau }}}_{{j}}}{}{{{\mathbf{\nu }}}^{\left({\mathrm{\tau }}\right)}}_{{l}}\right){}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{{\mathrm{\mu }}}\right){}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}\right)}_{{j}{,}{k}}}{{2}}$ (51)

A process at tree level with a positron and electronic neutrino incoming and the antiparticle of the muon and a muon neutrino outgoing after exchanging a W boson

 $\frac{{-}\frac{{i}}{{4}}{}\stackrel{{&conjugate0;}}{{\left({{\mathbit{v}}}_{{\mathbf{e}}}\right)}_{{m}}{}\left({\stackrel{{\to }}{{P}}}_{{1}}\right)}{}{\left({{\mathbit{u}}}_{{{\mathbf{\nu }}}^{\left({\mathrm{e}}\right)}}\right)}_{{n}}{}\left({\stackrel{{\to }}{{P}}}_{{2}}\right){}{\left({{\mathbit{v}}}_{{\mathbf{\mu }}}\right)}_{{p}}{}\left({\stackrel{{\to }}{{P}}}_{{3}}\right){}\stackrel{{&conjugate0;}}{{\left({{\mathbit{u}}}_{{{\mathbf{\nu }}}^{\left({\mathrm{\mu }}\right)}}\right)}_{{q}}{}\left({\stackrel{{\to }}{{P}}}_{{4}}\right)}{}\left({-}\frac{{i}{}\sqrt{{2}}{}\mathrm{g__w}{}{\left({{\mathrm{\gamma }}}_{{5}}\right)}_{{r}{,}{p}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\alpha }}}}^{\phantom{{}}{\mathrm{\alpha }}}\right)}_{{q}{,}{r}}}{{2}}{-}\frac{{i}{}\sqrt{{2}}{}\mathrm{g__w}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\alpha }}}}^{\phantom{{}}{\mathrm{\alpha }}}\right)}_{{q}{,}{p}}}{{2}}\right){}\left({-}\frac{{i}{}\sqrt{{2}}{}\mathrm{g__w}{}{\left({{\mathrm{\gamma }}}_{{5}}\right)}_{{s}{,}{n}}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\nu }}}\right)}_{{m}{,}{s}}}{{2}}{-}\frac{{i}{}\sqrt{{2}}{}\mathrm{g__w}{}{\left({{\mathrm{\gamma }}}_{\phantom{{}}\phantom{{\mathrm{\nu }}}}^{\phantom{{}}{\mathrm{\nu }}}\right)}_{{m}{,}{n}}}{{2}}\right){}\left({-}{{g}}_{{\mathrm{\alpha }}{,}{\mathrm{\nu }}}{+}\frac{\left({\mathrm{P__1}}_{{\mathrm{\nu }}}{+}{\mathrm{P__2}}_{{\mathrm{\nu }}}\right){}\left({\mathrm{P__1}}_{{\mathrm{\alpha }}}{+}{\mathrm{P__2}}_{{\mathrm{\alpha }}}\right)}{{{m}}_{{{\mathbf{W}}}^{{\mathrm{-}}}}^{{2}}}\right){}{\mathrm{\delta }}{}\left({-}{\mathrm{P__3}}_{\phantom{{}}\phantom{{\mathrm{\beta }}}}^{\phantom{{}}{\mathrm{\beta }}}{-}{\mathrm{P__4}}_{\phantom{{}}\phantom{{\mathrm{\beta }}}}^{\phantom{{}}{\mathrm{\beta }}}{+}{\mathrm{P__1}}_{\phantom{{}}\phantom{{\mathrm{\beta }}}}^{\phantom{{}}{\mathrm{\beta }}}{+}{\mathrm{P__2}}_{\phantom{{}}\phantom{{\mathrm{\beta }}}}^{\phantom{{}}{\mathrm{\beta }}}\right)}{{{\mathrm{\pi }}}^{{2}}{}\left(\left({\mathrm{P__1}}_{{\mathrm{\kappa }}}{+}{\mathrm{P__2}}_{{\mathrm{\kappa }}}\right){}\left({\mathrm{P__1}}_{\phantom{{}}\phantom{{\mathrm{\kappa }}}}^{\phantom{{}}{\mathrm{\kappa }}}{+}{\mathrm{P__2}}_{\phantom{{}}\phantom{{\mathrm{\kappa }}}}^{\phantom{{}}{\mathrm{\kappa }}}\right){-}{{m}}_{{{\mathbf{W}}}^{{\mathrm{-}}}}^{{2}}{+}{i}{}{\mathbf{\epsilon }}\right)}$ (52)

The term ${L}_{\mathrm{HV}}$ of the electroweak Lagrangian contains the interaction between the Higgs and the Z and W bosons

 $\mathrm{L__HV}{=}\left(\frac{\mathrm{g__w}{}{\mathbf{\Phi }}}{{{m}}_{{\mathbf{W}}}}{+}\frac{{\mathrm{g__w}}^{{2}}{}{{\mathbf{\Phi }}}^{{2}}}{{4}{}{{m}}_{{\mathbf{W}}}^{{2}}}\right){}\left({{m}}_{{\mathbf{W}}}^{{2}}{}{{{\mathbf{W}}}^{{\mathrm{+}}}}_{{\mathrm{\mu }}}{}{{{\mathbf{W}}}^{{\mathrm{-}}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}{+}\frac{{{m}}_{{\mathbf{Z}}}^{{2}}{}{{\mathbf{Z}}}_{{\mathrm{\mu }}}{}{{\mathbf{Z}}}_{\phantom{{}}\phantom{{\mathrm{\mu }}}}^{\phantom{{}}{\mathrm{\mu }}}}{{2}}\right)$ (53)

The probability density at one loop for a process with three Higgs incoming and outgoing: to omit the large - two pages - algebraic result containing Feynman integrals, end the input line with ":", or remove that ending to see and manipulate the integrals. Note this result involves Feynman diagrams with two, three, four, five and six vertices. New in Maple 2023 are the diagrams with more than four vertices.

$\mathrm{FeynmanDiagrams}\left(\mathrm{rhs}\left(\right),\mathrm{incoming}=\left[\mathrm{HiggsBoson},\mathrm{HiggsBoson},\mathrm{HiggsBoson}\right],\mathrm{outgoing}=\left[\mathrm{HiggsBoson},\mathrm{HiggsBoson},\mathrm{HiggsBoson}\right],\mathrm{numberofloops}=1,\mathrm{diagrams},\mathrm{output}=\mathrm{probabilitydensity}\right):$