lcoeffp - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

padic

  

orderp

  

the order of a p-adic expansion of a rational function

  

lcoeffp

  

the leading coefficient of a p-adic expansion of a rational function

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

orderp(ex, p, x)

lcoeffp(ex, p, x)

Parameters

ex

-

rational function

p

-

irreducible (or square-free) polynomial or 1/x (or infinity)

x

-

independent variable

Description

• 

The orderp command computes the order at p of the p-adic expansion of a rational function ex in x.

• 

The lcoeffp command computes the leading coefficient  at p of the p-adic expansion of a rational function ex in x.

Examples

withpadic:

expansionx3+1x2+3x+5,x2+2,x

p_adicx2+2,0,x313,49,481+4x81,4x72916729,8x656146561,20x59049+445904931+p_adicx2+2,0,x313,49,481+4x81,4x72916729,8x656146561,20x59049+445904932x2+2+p_adicx2+2,0,x313,49,481+4x81,4x72916729,8x656146561,20x59049+445904933x2+22+p_adicx2+2,0,x313,49,481+4x81,4x72916729,8x656146561,20x59049+445904934x2+23+p_adicx2+2,0,x313,49,481+4x81,4x72916729,8x656146561,20x59049+445904935x2+24+p_adicx2+2,0,x313,49,481+4x81,4x72916729,8x656146561,20x59049+445904936x2+25+Ox2+26

(1)

orderpx3+1x2+3x+5,x2+2,x

0

(2)

lcoeffpx3+1x2+3x+5,x2+2,x

x313

(3)

expansionx3+1x2+3x+5,1x,x

p_adic1x,−1,1,−3,4,4,−32,76311x+p_adic1x,−1,1,−3,4,4,−32,76321x2+p_adic1x,−1,1,−3,4,4,−32,76331x3+p_adic1x,−1,1,−3,4,4,−32,76341x4+p_adic1x,−1,1,−3,4,4,−32,76351x5+p_adic1x,−1,1,−3,4,4,−32,76361x6+O1x5

(4)

orderpx3+1x2+3x+5,1x,x

−1

(5)

lcoeffpx3+1x2+3x+5,1x,x

1

(6)

See Also

padic

padic[expansion]

 


Download Help Document