dvalue - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

# Online Help

###### All Products    Maple    MapleSim

liesymm

 dvalue
 Force evaluation of derivatives

 Calling Sequence dvalue(f)

Parameters

 f - any expression involving Diff

Description

 • Routines in the liesymm package manipulate and produce results expressed in terms of inert derivatives''. This is accomplished by using Diff'' instead of diff''. The dvalue() command forces the evaluation to take place as if diff'' had been used, and then rewrites the final result in terms of the inert Diff''.
 • The action of dvalue differs from that of value only in that the final result is expressed in terms of Diff'' rather than diff''.
 • One can also use convert(...) to reformulate a given PDE See the examples below.
 • One key advantage of the inert representation is that the operands can be modified to reflect desired changes in dependencies prior to evaluation.  This can be accomplished by use of vfix().
 • The results of using diff() and Diff() often display the same way.  To determine which of these two is actually present, use lprint().  or has( ... , diff ), etc.
 • This routine is ordinarily loaded via with(liesymm) but can be used in the package style'' as liesymm[dvalue]()

Examples

 > $\mathrm{with}\left(\mathrm{liesymm}\right):$
 > $\mathrm{eq}≔\frac{{{\partial }}^{2}}{{\partial }{x}^{2}}h\left(t,x\right)=\frac{{\partial }}{{\partial }t}h\left(t,x\right)$
 ${\mathrm{eq}}{≔}\frac{{{\partial }}^{{2}}}{{\partial }{{x}}^{{2}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({t}{,}{x}\right){=}\frac{{\partial }}{{\partial }{t}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({t}{,}{x}\right)$ (1)
 > $\mathrm{eq1}≔\mathrm{map}\left(\mathrm{Diff},\mathrm{eq},t\right)$
 ${\mathrm{eq1}}{≔}\frac{{{\partial }}^{{3}}}{{\partial }{t}{\partial }{{x}}^{{2}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({t}{,}{x}\right){=}\frac{{{\partial }}^{{2}}}{{\partial }{{t}}^{{2}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({t}{,}{x}\right)$ (2)
 > $\mathrm{eq2}≔\mathrm{dvalue}\left(\right)$
 ${\mathrm{eq2}}{≔}\frac{{{\partial }}^{{3}}}{{\partial }{{x}}^{{2}}{\partial }{t}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({t}{,}{x}\right){=}\frac{{{\partial }}^{{2}}}{{\partial }{{t}}^{{2}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({t}{,}{x}\right)$ (3)
 > $\mathrm{has}\left(\mathrm{eq2},\mathrm{diff}\right)$
 ${\mathrm{false}}$ (4)
 > $\mathrm{has}\left(\mathrm{value}\left(\mathrm{eq2}\right),\mathrm{diff}\right)$
 ${\mathrm{true}}$ (5)

make h independent of t and x.

 > $\mathrm{vfix}\left(\mathrm{eq},\left[\right],h\right)$
 $\frac{{{ⅆ}}^{{2}}{h}}{{ⅆ}{{x}}^{{2}}}{=}\frac{{ⅆ}{h}}{{ⅆ}{t}}$ (6)
 > $\mathrm{dvalue}\left(\right)$
 ${0}{=}{0}$ (7)

make h independent of t.

 > $\mathrm{vfix}\left(\mathrm{eq},\left[x\right],h\right)$
 $\frac{{{ⅆ}}^{{2}}}{{ⅆ}{{x}}^{{2}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({x}\right){=}\frac{{\partial }}{{\partial }{t}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({x}\right)$ (8)
 > $\mathrm{dvalue}\left(\right)$
 $\frac{{{ⅆ}}^{{2}}}{{ⅆ}{{x}}^{{2}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({x}\right){=}{0}$ (9)

Convert to different representations.

 > $\mathrm{convert}\left(\mathrm{eq},\mathrm{diff}\right)$
 $\frac{{{\partial }}^{{2}}}{{\partial }{{x}}^{{2}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({t}{,}{x}\right){=}\frac{{\partial }}{{\partial }{t}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({t}{,}{x}\right)$ (10)
 > $\mathrm{has}\left(,\mathrm{diff}\right)$
 ${\mathrm{true}}$ (11)
 > $\mathrm{convert}\left(\mathrm{eq},\mathrm{D}\right)$
 ${{\mathrm{D}}}_{{2}{,}{2}}{}\left({h}\right){}\left({t}{,}{x}\right){=}{{\mathrm{D}}}_{{1}}{}\left({h}\right){}\left({t}{,}{x}\right)$ (12)
 > $\mathrm{convert}\left(,\mathrm{Diff}\right)$
 $\frac{{{\partial }}^{{2}}}{{\partial }{{x}}^{{2}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({t}{,}{x}\right){=}\frac{{\partial }}{{\partial }{t}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{h}{}\left({t}{,}{x}\right)$ (13)

 See Also