intsolve
solve a linear integral equation
Calling Sequence
Parameters
Description
Examples
References
Compatibility
intsolve( Inteqn, funcn )
intsolve( Inteqn, funcn, method = ..., order = ... )
Inteqn
-
linear integral equation in funcn
funcn
unknown function to be solved for
method = ...
optional, the right-hand side can be any of: collocation, differentialequation, eigenfunction, Neumann, Laplace
order = ...
optional, the right-hand side can be a positive integer, specifying the order of the series approximation to use with the Neumann method, or the degree of polynomial to use with the collocation method
The intsolve command is able to find exact closed-form solutions to various types of integral equations as explained below. The solution is returned as an explicit equation with the unknown function in the left-hand side and the solution in the right-hand side. In some cases arbitrary constants are returned in the solution; they are represented as _C1,_C2,…,_Cn, as in the output of dsolve. When the solution contains integrals, they are represented with the inert Int.
By default, intsolve converts, using the differentialequation method, the linear integral equation into an equivalent ODE problem with initial values (ODE-IVP), then attempts solving this problem; if it fails, it uses an eigenfunction approach. The method Laplace is optional and tackles the problem using a Laplace transform. The collocation and Neumann methods are also optional, and compute approximations to the solution.
intsolve can recognize Fredholm and Volterra integral equations of the following kinds:
Fredholm equation of the first kind (F1):
∫abk⁡x,y⁢f⁡yⅆy=g⁡x
Fredholm equation of the second kind (F2):
f⁡x+∫abk⁡x,y⁢f⁡yⅆy=g⁡x
Fredholm equation of the third (homogeneous) kind (F3):
f⁡x+∫abk⁡x,y⁢f⁡yⅆy=0
Volterra equation of the first kind (V1):
∫axk⁡x,y⁢f⁡yⅆy=g⁡x
Volterra equation of the second kind (V2):
f⁡x+∫axk⁡x,y⁢f⁡yⅆy=g⁡x
Volterra equation of the third (homogeneous) kind (V3):
f⁡x+∫axk⁡x,y⁢f⁡yⅆy=0
The Laplace method is applicable to equations of V1, V2 and V3 type. One advantage to using this option is that the integral equation may contain the Dirac or Heaviside functions. This method is not suitable for finding a solution when the equation does not possess a convolution type kernel.
The collocation method for approximating solutions is applicable to Fredholm equations. This technique first partitions the interval a,b uniformly into n+1 points, where positive integer n is 10 by default or set by passing order=n. Then, the coefficients of an undetermined polynomial of degree n are determined so that the polynomial satisfies the integral equation at the collocation points. The solve command is used to solve the collocation equations, so if a numeric approximation is desired, you can include floats inside the integral equation.
The Neumann method is applicable to equations of V2, F2, and some of V1 type. The default order of the Neumann series in the solution is Order - this value can be overridden by passing the optional argument order = n, where n is a positive integer.
When method is not specified, intsolve will check if the integral within the integral equation is of the form of a Fourier-Sine, Fourier-Cosine, or Laplace transform. That is, it will check if the integral equation can be written
∫0∞f⁡y⁢a⁡y⁢b⁡x⁢yⅆy=c⁡x
where b⁡z is one of sin⁡z, cos⁡z, or ⅇ−z. In this case, intsolve will apply the appropriate inverse integral transform.
infolevel[intsolve] := 1,2,3 or 5 gives descriptive information on the progress of the computation. 5 may result in excessive printing.
Example 1
Consider the following example:
eq1≔p⁡x−12⁢Int⁡x⁢y⁢p⁡y,y=0..1=56⁢x
eq1≔p⁡x−∫01x⁢y⁢p⁡yⅆy2=5⁢x6
intsolve⁡eq1,p⁡x
p⁡x=x
If we instead use the 'Neumann' method, an approximation to this result is returned:
intsolve⁡eq1,p⁡x,method=Neumann
p⁡x=279935⁢x279936
intsolve⁡eq1,p⁡x,method=Neumann,order=20
p⁡x=21936950640377855⁢x21936950640377856
Example 2
Computing the solution and verifying the result:
eq2≔f⁡x=x+1+Int⁡1+2⁢x−y⁢f⁡y,y=0..x
eq2≔f⁡x=x+1+∫0x1+2⁢x−2⁢y⁢f⁡yⅆy
intsolve⁡eq2,f⁡x
f⁡x=ⅇ2⁢x
To verify this solution, transform it first into a procedure:
f=unapply⁡rhs⁡,x
f=x↦ⅇ2⋅x
eval⁡eq2,
ⅇ2⁢x=x+1+∫0x1+2⁢x−2⁢y⁢ⅇ2⁢yⅆy
value⁡
ⅇ2⁢x=ⅇ2⁢x
Example 3
For some type of problems the solution obtained using the Laplace method contains Dirac functions:
eq3≔Int⁡exp⁡a⁢x−y⁢f⁡y,y=0..x=1
eq3≔∫0xⅇa⁢x−y⁢f⁡yⅆy=1
intsolve⁡eq3,f⁡x,method=Laplace
f⁡x=Dirac⁡x−a
Example 4
Another type of integral equation automatically solved using the eigenfunction approach:
eq4≔f⁡x+b⁢Int⁡x⁢y+x2⁢y2⁢f⁡y,y=−1..1=d⁡x
eq4≔f⁡x+b⁢∫−11x2⁢y2+x⁢y⁢f⁡yⅆy=d⁡x
intsolve⁡eq4,f⁡x
f⁡x=∫−11−5⁢x2⁢b⁢y22⁢b+5−3⁢x⁢b⁢y2⁢b+3⁢d⁡yⅆy+d⁡x
Example 5
An example where an arbitrary constant _C1 is introduced with the solution:
eq5≔3⁢x2+4⁢x=Int⁡6⁢x2⁢y+4⁢x⁢y2⁢p⁡y,y=−1..1
eq5≔3⁢x2+4⁢x=∫−116⁢x2⁢y+4⁢x⁢y2⁢p⁡yⅆy
intsolve⁡eq5,p⁡x
p⁡x=x2⁢_C1+34⁢x+32−35⁢_C1
Example 6
An example which is in the form of an integral transform:
eq6≔Int⁡f⁡y1+y2⁢sin⁡x⁢y,y=0..∞=exp⁡−3⁢x
eq6≔∫0∞f⁡y⁢sin⁡x⁢yy2+1ⅆy=ⅇ−3⁢x
intsolve⁡eq6,f⁡x
f⁡x=2⁢x⁢x2+1π⁢x2+9
Example 7
The solution of a Fredholm integral equation can be approximated using the collocation method:
a≔0:
b≔5:
g≔x↦−x:
k≔x,y↦piecewise⁡x<y,x⋅b−y,y⋅b−x:
eq7≔f⁡x+int⁡f⁡y⁢k⁡x,y,y=a..b+g⁡x
eq7≔f⁡x+∫05x⁢5−yx<yy⁢5−xotherwise⁢f⁡yⅆy−x
p≔unapply⁡rhs⁡intsolve⁡eq7,f⁡x,method=collocation,order=10,x
p≔x↦2200008122882553⋅x10−3308109894700060853654989179049⋅x9+9833176935000020284551663059683⋅x8−50103131487960020284551663059683⋅x7+159425652170750020284551663059683⋅x6−650249291540845540569103326119366⋅x5+842986603377812540569103326119366⋅x4−990232586597760560853654989179049⋅x3+140115965680687520284551663059683⋅x2−23186409996444220284551663059683⋅x
Plot of the approximate solution:
plot⁡p,a..b,title=Approximate Solution of Integral Equation,color=blue
To test how close the approximation matches the actual solution, we can sample the absolute value of the expression for the integral equation over the interval:
n≔100:
q≔unapply⁡abs⁡eval⁡eq7,f=p,x:
X≔Vector⁡n,i↦evalf⁡a+i−1⋅b−an−1:
E≔`~`q⁡X:
dataplot⁡X,E,style=line,title=Error of Approximate Solution of Integral Equation
avg_error≔add⁡En
avg_error≔0.0001670862960
max_error≔max⁡E
max_error≔0.001720013949
Example 8
The Laplace method can be used to solve singular integral equations:
eq8≔Int⁡f⁡ysqrt⁡x−y,y=0..x−x2
eq8≔∫0xf⁡yx−yⅆy−x2
intsolve⁡eq8,f⁡x,method=Laplace
f⁡x=8⁢x323⁢π
Chambers, LL. G. Integral Equations: A Short Course. London: International Textbook Company Ltd., 1976.
Tricomi, F. G. Integral Equations. New York: Interscience, 1957.
The intsolve command was updated in Maple 2021.
See Also
D
dsolve
inttrans[invlaplace]
inttrans[laplace]
Download Help Document
What kind of issue would you like to report? (Optional)