 faces - Maple Help

geom3d

 faces
 return the faces of a polyhedron Calling Sequence faces(obj) Parameters

 obj - polyhedron Description

 • The routine faces returns the faces of the given polyhedron.
 • Each face is represented as a list of coordinates of its vertices which are listed in counter-clockwise order as viewed from outside the polyhedron.
 • The command with(geom3d,faces) allows the use of the abbreviated form of this command. Examples

 > $\mathrm{with}\left(\mathrm{geom3d}\right):$

Define a tetrahedron with center (0,0,0), radius of the circum-sphere 2

 > $\mathrm{tetrahedron}\left(t,\mathrm{point}\left(o,0,0,0\right),2\right)$
 ${t}$ (1)
 > $\mathrm{faces}\left(t\right)$
 $\left[\left[\left[\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}\right]{,}\left[\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}\right]{,}\left[{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}\right]\right]{,}\left[\left[\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}\right]{,}\left[{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}\right]{,}\left[\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}\right]\right]{,}\left[\left[\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}\right]{,}\left[{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}\right]{,}\left[{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}\right]\right]{,}\left[\left[\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}\right]{,}\left[{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}\right]{,}\left[{-}\frac{{2}{}\sqrt{{3}}}{{3}}{,}\frac{{2}{}\sqrt{{3}}}{{3}}{,}{-}\frac{{2}{}\sqrt{{3}}}{{3}}\right]\right]\right]$ (2)