Simply Supported Beam Design with Torsional Loading - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Applications and Example Worksheets : Science and Engineering : Simply Supported Beam Design with Torsional Loading

Simply Supported Beam Design with Torsional Loading

Using AISC Steel Shapes v14.1 Data

Introduction

This application performs a design analysis on a simply supported beam with torsional loading for a W10X54 steel beam (as defined by the AISC Steel Shapes Database).

 

 

References:

• 

Simplified Design for Torsional Loading of Rolled Steel Members, Lin, P.H., Engineering Journal, AISC, 1977

• 

2010 Specification for Structural Steel Buildings (ANSI/AISC 360-10), Fourth Printing (https://www.aisc.org/content.aspx?id=2884)

 

You will need to install the AISC Shapes Database package from the MapleCloud before you can use this application.

 

Load the AISC Package

withAISCShapes:

withUnitsStandard:

 

Data from the AISC Shapes Database for Steel Shape W10X54

CwPropertyW10X54,Cw;PropertyW10X54,Cw,metadata

Cw2320.0in6

Warping constant

(3.1)

JTPropertyW10X54,J;PropertyW10X54,J,metadata

JT1.82in4

Torsional moment of inertia

(3.2)

dPropertyW10X54,d;PropertyW10X54,d,metadata

d10.1in

Overall depth of member, or width of shorter leg for angles, or width of the outstanding legs of long legs back-to-back double angles, or the width of the back-to-back legs of short legs back-to-back double angles

(3.3)

SxPropertyW10X54,Sx;PropertyW10X54,Sx,metadata

Sx60.0in3

Elastic section modulus about the x-axis

(3.4)

SyPropertyW10X54,Sy;PropertyW10X54,Sy,metadata

Sy20.6in3

Elastic section modulus about the y-axis

(3.5)

rxPropertyW10X54,rx;PropertyW10X54,rx,metadata

rx4.37in

Radius of gyration about the x-axis = sqrt(Ix/A)

(3.6)

APropertyW10X54,A;PropertyW10X54,A,metadata

A15.8in2

Cross-sectional area of member

(3.7)

ZxPropertyW10X54,Zx;PropertyW10X54,Zx,metadata

Zx66.6in3

Plastic section modulus about the x-axis

(3.8)

IxPropertyW10X54,Ix;PropertyW10X54,Ix,metadata

Ix303.0in4

Moment of inertia about the x-axis

(3.9)

IyPropertyW10X54,Iy;PropertyW10X54,Iy,metadata

Iy103.0in4

Moment of inertia about the y-axis

(3.10)

 

Parameters

Gravity distributed load:

w1.15kipfft:


Lateral point load at the middle:

F5kipf:


Torsion at mid-span:

T5.1ft kipf:


Axial Load:

P96kipf:


Beam length:

L15ft:


Beam yield stress:

Fy50ksi:


Vertical bending unbraced length:

Lb15ft:


Axial vertical unbraced length:

Lx15ft:


Axial horizontal unbraced length:

Ly7.5ft:


Young's modulus and shear modulus:

E29000ksi:

G11200ksi:


Torsional property (Phillip, 1977):

λGJTECw

0.017406109611in

(4.1)

Determine Governing Moments at Middle of Span

Flexural moment:

MxwL28

32.34footkipf

(5.1)

MyFL4.0

18.75footkipf

(5.2)

M0TL4d

22.72footkipf

(5.3)

Philip page 101

β4sinhλL22λLsinhλL

β0.5850278056

(5.4)

Torsional moment:

MTβM0

13.29footkipf

(5.5)

 

Check Torsional Capacity (AISC 360-10 H3.3 & Philip page 100)

Maximum combined normal stress at the load point:

fbxMxSx+2MTSy

21.96kipfinch2

(6.1)

Safety factor for compression:

Ω1.67:

FnxFyΩ

29.94ksi

(6.2)

fbxFnx

0.7333393767

(6.3)

This is less then 1, so it is satisfactory.

 

Check Combined Compression and Bending Capacity (AISC 360-10, H1)

MrxMxSx+2MTSySx

109.78footkipf

(7.1)

Effective length factor:

K0.85:


Elastic bucking stress:

Feπ2EKLrx2

233.50ksi

(7.2)

Critical stress:

Fcr0.658FyFeFy

45.71ksi

(7.3)

PnFcrA

722.27kipf

(7.4)

 Allowable axial strength:

PcPnΩ

432.50kipf

(7.5)

This is greater than 3/4 Pr, so it is satisfactory.

 

Available flexural strength (Chapter F AISC 360-10):

 

MnminFyZx,FySx

250.00footkipf

(7.6)

McxMnΩ

149.70footkipf

(7.7)

This is greater than Mrx, so it is satisfactory.

McyMnΩ

149.70footkipf

(7.8)

These should be below 1 for a satisfactory design.

PPc+89MrxMcx+MyMcy

.99

(7.9)

Determine Deflections

Max twist angle (Lin, p100 eq4) in degrees:

φT2GJTλλL22sinhλL2sinhλLsinhλL2

φ0.2304416908

(8.1)

I3Ixsin90φπ1802+Iycos90φπ1802

303.00in4

(8.2)

I4Ixcos90φπ1802+Iysin90φπ1802

103.00in4

(8.3)

Vertical deflection at the middle:

Δvert  5wL4384EI3

.15in

(8.4)

Horizontal deflection at the middle:

Δhoriz  FL348EI4

.20in

(8.5)