 PlotVector - Maple Help

VectorCalculus

 PlotVector
 Plot a VectorCalculus object Calling Sequence PlotVector(v, opts) Parameters

 v - Vector or list(Vector); specify which Vector(s) to plot opts - (optional) plot options Description

 • The PlotVector(v) command takes a Vector or a list of Vectors, and plots them in the appropriate form:
 – Free Vectors and rooted Vectors are plotted using plots[arrow]. Rooted Vectors are positioned correctly.
 – Vector fields are plotted using plots[fieldplot] or plots[fieldplot3d]. If one or more ranges are missing in opts, a default range is applied.
 • If v is a Vector, the plot options given in opts will be passed on to the appropriate plot command.
 • If v is a list of Vectors, then the appropriate plotting command is invoked for each Vector in v with the plot options given in opts.
 – To visually distinguish these Vectors in the plot, the colour plot option can be supplied as a list. If this is done, Vectors in v will be plotted using respective colours from this list.
 – More precisely, for each Vector in v, the appropriate plotting command will be invoked with the respective element of this list as the colour option; other plot options in opts are passed normally. The colour list and the list of Vectors v must have the same size.
 – Note that the colour option can also be given as color. For more information, please see plot/color and plot/colornames. Examples

 > $\mathrm{with}\left(\mathrm{VectorCalculus}\right):$
 > $\mathrm{PlotVector}\left(\mathrm{VectorField}\left(⟨0,1⟩,\mathrm{polar}\left[r,t\right]\right),r=0..1,t=0..\frac{3\mathrm{\pi }}{2},\mathrm{axes}=\mathrm{normal}\right)$ > $\mathrm{PlotVector}\left(\left[⟨1,1⟩,⟨-1,1⟩,⟨1,-1⟩\right],\mathrm{color}=\mathrm{yellow}\right)$ > $\mathrm{PlotVector}\left(\left[⟨1,1⟩,⟨-1,1⟩,⟨1,-1⟩\right],\mathrm{color}=\left[\mathrm{red},\mathrm{blue},\mathrm{green}\right]\right)$ The command to create the plot from the Plotting Guide is

 > $\mathrm{vs1}≔\mathrm{VectorSpace}\left('\mathrm{cartesian}',\left[0,0\right]\right):$
 > $\mathrm{vs2}≔\mathrm{VectorSpace}\left('\mathrm{cartesian}',\left[1,2\right]\right):$
 > $\mathrm{PlotVector}\left(\left[\mathrm{vs1}:-\mathrm{Vector}\left(\left[1,2\right]\right),\mathrm{vs1}:-\mathrm{Vector}\left(\left[3,2\right]\right),\mathrm{vs2}:-\mathrm{Vector}\left(\left[2,0\right]\right)\right]\right)$ > $\mathrm{vs1}≔\mathrm{VectorSpace}\left('\mathrm{cartesian}',\left[0,0,0\right]\right):$
 > $\mathrm{vs2}≔\mathrm{VectorSpace}\left('\mathrm{cartesian}',\left[1,2,1\right]\right):$
 > $\mathrm{PlotVector}\left(\left[\mathrm{vs1}:-\mathrm{Vector}\left(\left[1,2,1\right]\right),\mathrm{vs1}:-\mathrm{Vector}\left(\left[3,2,1\right]\right),\mathrm{vs2}:-\mathrm{Vector}\left(\left[2,0,0\right]\right)\right]\right)$ 