Center of Mass for 3D Region in Spherical Coordinates
Description
Determine ρ&conjugate0;,φ&conjugate0;, and θ&conjugate0;, the center of mass coordinates for a 3D region in spherical coordinates.
(φ is the colatitude, measured down from the z-axis)
Density:
ρ
ρ
Region: ρ1φ,θ≤ρ≤ρ2φ,θ,φ1θ≤φ≤φ2θ,a≤θ≤b
ρ1φ,θ
0
ρ2φ,θ
1
φ1θ
φ2θ
π6
16⁢π
a
b
2 π
2⁢π
Moments ÷ Mass:
Inert Integral - dρ dφ dθ
StudentMultivariateCalculusCenterOfMass,ρ=..,φ=..,θ=..,coordinates=sphericalρ,φ,θ,output=integral
∫02⁢π∫016⁢π∫01sin⁡φ2⁢cos⁡θ⁢ρ4ⅆρⅆφⅆθ∫02⁢π∫016⁢π∫01ρ3⁢sin⁡φⅆρⅆφⅆθ,∫02⁢π∫016⁢π∫01sin⁡φ2⁢sin⁡θ⁢ρ4ⅆρⅆφⅆθ∫02⁢π∫016⁢π∫01ρ3⁢sin⁡φⅆρⅆφⅆθ,∫02⁢π∫016⁢π∫01cos⁡φ⁢ρ4⁢sin⁡φⅆρⅆφⅆθ∫02⁢π∫016⁢π∫01ρ3⁢sin⁡φⅆρⅆφⅆθ
Explicit values for ρ&conjugate0;,φ&conjugate0;, and θ&conjugate0;, the center of mass given in spherical coordinates:
StudentMultivariateCalculusCenterOfMass,ρ=..,φ=..,θ=..,coordinates=sphericalρ,φ,θ
120⁢π12⁢π−14⁢3⁢π,0,0
Commands Used
Student[MultivariateCalculus][CenterOfMass]
Related Task Templates
Multivariate Calculus > Multiple Integration > Spherical
See Also
Student[MultivariateCalculus, Student[MultivariateCalculus][MultiInt]
Download Help Document
What kind of issue would you like to report? (Optional)