Chapter 8: Applications of Triple Integration
Section 8.4: Moments of Inertia (Second Moments)
Example 8.4.5
If R is the region that lies between the plane z=0 and the paraboloid z=9−x2−y2, and δr,θ,z=z is the density in R, obtain the moments of inertia and the radii of gyration about the Cartesian coordinate-axes.
(See Example 8.1.20.)
Solution
Maple Solution - Interactive
Initialize
Context Panel: Assign Name
δ=z→assign
The calculations for the moments of inertia are detailed in Table 8.4.6(a) where the iterated integrals are a modification of the contents of Table 8.1.20(c).
Context Panel: Evaluate and Display Inline
Context Panel: Approximate≻5 (digits)
Ix=∫02 π∫03∫09−r2δ r2sin2θ+z2 r ⅆz ⅆr ⅆθ→assign
Ix = 24713180π→at 5 digits9704.7
Iy=∫02 π∫03∫09−r2δ r2cos2θ+z2 r ⅆz ⅆr ⅆθ→assign
Iy = 24713180π→at 5 digits9704.7
Iz=∫02 π∫03∫09−r2δ r2 r ⅆz ⅆr ⅆθ→assign
Iz = 21878π→at 5 digits858.85
Table 8.4.6(a) Calculations for the moments of inertia
The total mass m and the radii of gyration are given in Table 8.4.6(b).
m=∫02 π∫03∫09−r2δ r ⅆz ⅆr ⅆθ→assign
m = 2432π
kx=Ix/m→assign
kx = 3201130→at 5 digits5.0422
ky=Iy/m→assign
ky = 3201130→at 5 digits5.0422
kz=Iz/m→assign
kz = 32→at 5 digits1.5000
Table 8.4.6(b) Radii of gyration
Maple Solution - Coded
Define the density.
δ≔z:
Obtain the moments of inertia
Qx≔Intr δ r2sin2θ+z2,z=0..9−r2,r=0..3,θ=0..2 π
∫02π∫03∫0−r2+9rzr2sinθ2+z2ⅆzⅆrⅆθ
Ix≔valueQx
24713180π
Qy≔Intr δ r2cos2θ+z2,z=0..9−r2,r=0..3,θ=0..2 π
∫02π∫03∫0−r2+9rzr2cosθ2+z2ⅆzⅆrⅆθ
Iy≔valueQy
Qz≔Intr δ r2,z=0..9−r2,r=0..3,θ=0..2 π
∫02π∫03∫0−r2+9r3zⅆzⅆrⅆθ
Iz≔valueQz
21878π
Obtain the total mass m
M≔Intr δ,z=0..9−r2,r=0..3,θ=0..2 π
∫02π∫03∫0−r2+9rzⅆzⅆrⅆθ
m≔valueM
2432π
Obtain the radii of gyration
kx≔Ix/m
3201130
ky≔Iy/m
kz≔Iz/m
32
<< Previous Example Section 8.4 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document