Chapter 8: Applications of Triple Integration
Section 8.4: Moments of Inertia (Second Moments)
Example 8.4.4
If R is the region that is inside the cylinder x2+y2=9 and between the planes z=0 and y+z=5, and δr,θ,z=r2+z sinθ/4 is the density in R, obtain the moments of inertia and the radii of gyration about the Cartesian coordinate-axes.
(See Example 8.1.15.)
Solution
Maple Solution - Interactive
Initialize
Context Panel: Assign Name
δ=r2+z sinθ/4→assign
The calculations for the moments of inertia are detailed in Table 8.4.5(a) where the iterated integrals are a modification of the contents of Table 8.1.15(c).
Context Panel: Evaluate and Display Inline
Context Panel: Approximate≻5 (digits)
Ix=∫02 π∫03∫05−r sinθδ r2sin2θ+z2 r ⅆz ⅆr ⅆθ→assign
Ix = 18319367113090→at 5 digits13995.
Iy=∫02 π∫03∫05−r sinθδ r2cos2θ+z2 r ⅆz ⅆr ⅆθ→assign
Iy = 23270475017017→at 5 digits13675.
Iz=∫02 π∫03∫05−r sinθδ r2 r ⅆz ⅆr ⅆθ→assign
Iz = 29108770→at 5 digits4158.4
Table 8.4.5(a) Calculations for the moments of inertia
The total mass m and the radii of gyration are given in Table 8.4.5(b).
m=∫02 π∫03∫05− r sinθδ r ⅆz ⅆr ⅆθ→assign
m = 131322175
kx=Ix/m→assign
kx = 181857381249646161720165→at 5 digits4.3184
ky=Iy/m→assign
ky = 255320729782543938310405→at 5 digits4.2689
kz=Iz/m→assign
kz = 3437741179818735→at 5 digits2.3540
Table 8.4.5(b) Radii of gyration
Maple Solution - Coded
Define the density.
δ≔r2+z sinθ/4:
Obtain the moments of inertia
Qx≔Intr δ r2sin2θ+z2,z=0..5−r sinθ,r=0..3,θ=0..2 π
∫02π∫03∫05−rsinθrr2+zsin14θr2sinθ2+z2ⅆzⅆrⅆθ
Ix≔valueQx
18319367113090
Qy≔Intr δ r2cos2θ+z2,z=0..5−r sinθ,r=0..3,θ=0..2 π
∫02π∫03∫05−rsinθrr2+zsin14θr2cosθ2+z2ⅆzⅆrⅆθ
Iy≔valueQy
23270475017017
Qz≔Intr δ r2,z=0..5−r sinθ,r=0..3,θ=0..2 π
∫02π∫03∫05−rsinθr3r2+zsin14θⅆzⅆrⅆθ
Iz≔valueQz
29108770
Obtain the total mass m
M≔Intr δ,z=0..5−r sinθ,r=0..3,θ=0..2 π
∫02π∫03∫05−rsinθrr2+zsin14θⅆzⅆrⅆθ
m≔valueM
131322175
Obtain the radii of gyration
kx≔Ix/m
181857381249646161720165
ky≔Iy/m
255320729782543938310405
kz≔Iz/m
3437741179818735
<< Previous Example Section 8.4 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document