First Order ODEs - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

ODE Steps for First Order ODEs

 

Overview

Examples

Overview

• 

This help page gives a few examples of using the command ODESteps to solve first order ordinary differential equations.

• 

See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.

Examples

withStudent:-ODEs:

ode1t2zt+1+zt2t1diffzt,t=0

ode1t2zt+1+zt2t1ⅆⅆtzt=0

(1)

ODEStepsode1

Let's solvet2zt+1+zt2t1ⅆⅆtzt=0Highest derivative means the order of the ODE is1ⅆⅆtztSolve for the highest derivativeⅆⅆtzt=t2zt+1zt2t1Separate variablesⅆⅆtztzt2zt+1=t2t1Integrate both sides with respect totⅆⅆtztzt2zt+1ⅆt=t2t1ⅆt+c__1Evaluate integralzt22zt+lnzt+1=t22tlnt1+c__1

(2)

ode2diffyx,xfx+yx+gx=0

ode2ⅆⅆxyxfx+yx+gx=0

(3)

ODEStepsode2

Let's solveⅆⅆxyxfx+yx+gx=0Highest derivative means the order of the ODE is1ⅆⅆxyxSolve for the highest derivativeⅆⅆxyx=yx+gxfxCollect w.r.t.yxand simplifyⅆⅆxyx=fxyxfxgxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODEⅆⅆxyx+fxyx=fxgxThe ODE is linear; multiply by an integrating factorμxμxⅆⅆxyx+fxyx=μxfxgxAssume the lhs of the ODE is the total derivativeⅆⅆxyxμxμxⅆⅆxyx+fxyx=ⅆⅆxyxμx+yxⅆⅆxμxIsolateⅆⅆxμxⅆⅆxμx=μxfxSolve to find the integrating factorμx=ⅇfxⅆxIntegrate both sides with respect toxⅆⅆxyxμxⅆx=μxfxgxⅆx+c__1Evaluate the integral on the lhsyxμx=μxfxgxⅆx+c__1Solve foryxyx=μxfxgxⅆx+c__1μxSubstituteμx=ⅇfxⅆxyx=ⅇfxⅆxfxgxⅆx+c__1ⅇfxⅆxSimplifyyx=ⅇfxⅆxⅇfxⅆxfxgxⅆx+c__1

(4)

ode3diffyx,xyx+1+gxyx=0

ode3ⅆⅆxyxyx+1+gxyx=0

(5)

ODEStepsode3

Let's solveⅆⅆxyxyx+1+gxyx=0Highest derivative means the order of the ODE is1ⅆⅆxyxSolve for the highest derivativeⅆⅆxyx=1gxyxyxCollect w.r.t.yxand simplifyⅆⅆxyx=yxgxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODEⅆⅆxyx+yx=gxThe ODE is linear; multiply by an integrating factorμxμxⅆⅆxyx+yx=μxgxAssume the lhs of the ODE is the total derivativeⅆⅆxyxμxμxⅆⅆxyx+yx=ⅆⅆxyxμx+yxⅆⅆxμxIsolateⅆⅆxμxⅆⅆxμx=μxSolve to find the integrating factorμx=ⅇxIntegrate both sides with respect toxⅆⅆxyxμxⅆx=μxgxⅆx+c__1Evaluate the integral on the lhsyxμx=μxgxⅆx+c__1Solve foryxyx=μxgxⅆx+c__1μxSubstituteμx=ⅇxyx=ⅇxgxⅆx+c__1ⅇxSimplifyyx=ⅇxⅇxgxⅆx+c__1

(6)

ode42xyx9x2+2yx+x2+1diffyx,x=0

ode42xyx9x2+2yx+x2+1ⅆⅆxyx=0

(7)

ODEStepsode4

Let's solve2xyx9x2+2yx+x2+1ⅆⅆxyx=0Highest derivative means the order of the ODE is1ⅆⅆxyxCheck if ODE is exactODE is exact if the lhs is the total derivative of aC2functionⅆⅆxGx,yx=0Compute derivative of lhsxGx,y+yGx,yⅆⅆxyx=0Evaluate derivatives2x=2xCondition met, ODE is exactExact ODE implies solution will be of this formGx,y=c__1,Mx,y=xGx,y,Nx,y=yGx,ySolve forGx,yby integratingMx,ywith respect toxGx,y=9x2+2xyⅆx+_F1yEvaluate integralGx,y=3x3+x2y+_F1yTake derivative ofGx,ywith respect toyNx,y=yGx,yCompute derivativex2+2y+1=x2+ⅆⅆy_F1yIsolate forⅆⅆy_F1yⅆⅆy_F1y=2y+1Solve for_F1y_F1y=y2+ySubstitute_F1yinto equation forGx,yGx,y=3x3+x2y+y2+ySubstituteGx,yinto the solution of the ODE3x3+x2y+y2+y=c__1Solve foryxyx=x2212x4+12x3+2x2+4c__1+12,yx=x2212+x4+12x3+2x2+4c__1+12

(8)

ode5diffyx,xyxxexpx=0

ode5ⅆⅆxyxyxxⅇx=0

(9)

ODEStepsode5

Let's solveⅆⅆxyxyxxⅇx=0Highest derivative means the order of the ODE is1ⅆⅆxyxSolve for the highest derivativeⅆⅆxyx=yx+xⅇxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODEⅆⅆxyxyx=xⅇxThe ODE is linear; multiply by an integrating factorμxμxⅆⅆxyxyx=μxxⅇxAssume the lhs of the ODE is the total derivativeⅆⅆxyxμxμxⅆⅆxyxyx=ⅆⅆxyxμx+yxⅆⅆxμxIsolateⅆⅆxμxⅆⅆxμx=μxSolve to find the integrating factorμx=ⅇxIntegrate both sides with respect toxⅆⅆxyxμxⅆx=μxxⅇxⅆx+c__1Evaluate the integral on the lhsyxμx=μxxⅇxⅆx+c__1Solve foryxyx=μxxⅇxⅆx+c__1μxSubstituteμx=ⅇxyx=ⅇxxⅇxⅆx+c__1ⅇxEvaluate the integrals on the rhsyx=x22+c__1ⅇxSimplifyyx=ⅇxx22+c__1

(10)

See Also

diff

Int

Student

Student[ODEs]

Student[ODEs][ODESteps]

 


Download Help Document