Newton - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Student[NumericalAnalysis]

  

Newton

  

numerically approximate the real roots of an expression using Newton's method

 

Calling Sequence

Parameters

Options

Description

Notes

Examples

Calling Sequence

Newton(f, x=a, opts)

Newton(f, a, opts)

Parameters

f

-

algebraic; expression in the variable x representing a continuous function

x

-

name; the independent variable of f

a

-

numeric; the initial approximate root

opts

-

(optional) equation(s) of the form keyword=value, where keyword is one of fixedpointiterator, functionoptions, lineoptions, maxiterations, output, pointoptions, showfunction, showlines, showpoints, showverticalline, stoppingcriterion, tickmarks, caption, tolerance, verticallineoptions, view; the options for approximating the roots of f

Options

• 

functionoptions = list

  

A list of options for the plot of the expression f. By default, f is plotted as a solid red line.

• 

lineoptions = list

  

A list of options for the lines on the plot. By default the lines are solid blue.

• 

maxiterations = posint

  

The maximum number of iterations to to perform. The default value of maxiterations depends on which type of output is chosen:

– 

output = value: default maxiterations = 100

– 

output = sequence: default maxiterations = 10

– 

output = information: default maxiterations = 10

– 

output = plot: default maxiterations = 5

– 

output = animation: default maxiterations = 10

• 

output = value, sequence, plot, animation, or information

  

The return value of the function. The default is value.

– 

output = value returns the final numerical approximation of the root.

– 

output = sequence returns an expression sequence pk, k=0..n that converges to the exact root for a sufficiently well-behaved function and initial approximation.

– 

output = plot returns a plot of f with each iterative approximation shown and the relevant information about the numerical approximation displayed in the caption of the plot.

– 

output = animation returns an animation showing the iterations of the root approximation process.

– 

output = information returns detailed information about the iterative approximations of the root of f.

• 

plotoptions = list

  

The final plot options when output = plot or output = animation.

• 

pointoptions = list

  

A list of options for the points on the plot. By default, the points are plotted as green circles.

• 

showfunction = truefalse

  

Whether to display f on the plot or not.  By default, this option is set to true.

• 

showlines = truefalse

  

Whether to display lines that accentuate each approximate iteration when output = plot. By default, this option is set to true.  To control the vertical lines, see the showverticallines and verticallineoptions options.

• 

showpoints = truefalse

  

Whether to display the points at each approximate iteration on the plot when output = plot. By default, this option is set to true.

• 

showverticallines = truefalse

  

Whether to display the vertical lines at each iterative approximation on the plot when output = plot.

• 

stoppingcriterion = relative, absolute, or function_value

  

The criterion that the approximations must meet before discontinuing the iterations. The following describes each criterion:

– 

relative : pnpn1pn < tolerance

– 

absolute : pnpn1 < tolerance

– 

function_value : fpn < tolerance

  

By default, stoppingcriterion = relative.

• 

tickmarks = list

  

The tickmarks when output = plot or output = animation. By default, tickmarks are placed at the initial and final approximations with the labels p0 (or a and b for two initial approximates) and pn, where n is the total number of iterations used to reach the final approximation. See plot/tickmarks for more detail on specifying tickmarks.

• 

caption = string

  

A caption for the plot. The default caption contains general information concerning the approximation. For more information about specifying a caption, see plot/typesetting.

• 

tolerance = positive

  

The error tolerance of the approximation. The default value is 110000.

• 

verticallineoptions = list

  

A list of options for the vertical lines on the plot. By default, the lines are dashed and blue.

• 

view = [realcons..realcons, realcons..realcons]

  

The plot view of the plot when output = plot.  See plot/options for more information.

Description

• 

The Newton command numerically approximates the roots of an algebraic function, f, using the classical Newton-Raphson method.

• 

Given an expression f and an initial approximate a, the Newton command computes a sequence pk, k=0..n, of approximations to a root of f, where n is the number of iterations taken to reach a stopping criterion. For sufficiently well-behaved functions and sufficiently good initial approximations, the convergence of pk toward the exact root is quadratic.

• 

The Newton command is a shortcut for calling the Roots command with the method=newton option.

Notes

• 

Newton's method will fail if &DifferentialD;&DifferentialD;xfpk1=0.

Examples

withStudentNumericalAnalysis&colon;

fexpx+2x+2cosx6&colon;

Newtonf&comma;x=2.0&comma;tolerance=102

1.829383715

(1)

Newtonf&comma;x=2.0&comma;tolerance=102&comma;output=sequence

2.0,1.850521336,1.829751202,1.829383715

(2)

Newtonf&comma;x=2&comma;output=plot&comma;stoppingcriterion=function_value

To play the following animation in this help page, right-click (Control-click, on Mac) the plot to display the context menu.  Select Animation > Play.

Newtonf&comma;x=1.3&comma;output=animation&comma;stoppingcriterion=absolute

See Also

Student[NumericalAnalysis]

Student[NumericalAnalysis][Roots]

Student[NumericalAnalysis][VisualizationOverview]