OrthogonalSeries
GetInfo
return information about hypergeometric orthogonal polynomials
Calling Sequence
Parameters
Description
Examples
GetInfo(P, subject, optional_arg)
P
-
hypergeometric polynomial
subject
literal name; one of recurrence, structural, hypergeom, derivative, and derivative_representation
optional_arg
(optional) equation of the form root=val where val is an expression
The GetInfo(P, subject) command returns information about the hypergeometric polynomial P that depends on the value of subject.
hypergeom: hypergeometric functional equation satisfied by P and the normalization coefficient of the Rodrigues formula.
recurrence: three-term recurrence for P.
derivative: derivative of P.
structural: structural relation(s). If the optional equation root=val is specified, GetInfo returns the partial structural relation with respect to val. This is available for only continuous hypergeometric polynomials.
derivative_representation: derivative representation for P. If the optional equation root=val is specified, GetInfo returns the partial derivative representation with respect to val. This is available for only continuous hypergeometric polynomials.
with⁡OrthogonalSeries:
GetInfo⁡LaguerreL⁡n,1,x,derivative_representation
LaguerreL⁡n,1,x=LaguerreL⁡n,2,x−LaguerreL⁡n−1,2,x
GetInfo⁡LaguerreL⁡n,1,x,hypergeom
x⁢∂2∂x2LaguerreL⁡n,1,x+−x+2⁢∂∂xLaguerreL⁡n,1,x+n⁢LaguerreL⁡n,1,x=0,_B⁡n=1n!
GetInfo⁡LaguerreL⁡n,1,x,recurrence
x⁢LaguerreL⁡n,1,x=2+2⁢n⁢LaguerreL⁡n,1,x+−1−n⁢LaguerreL⁡n−1,1,x+−1−n⁢LaguerreL⁡n+1,1,x
GetInfo⁡LaguerreL⁡n,1,x,structural
x⁢∂∂xLaguerreL⁡n,1,x=n⁢LaguerreL⁡n,1,x+−1−n⁢LaguerreL⁡n−1,1,x
GetInfo⁡JacobiP⁡n,α,β,x,structural,root=−1
−x2+1⁢∂∂xJacobiP⁡n,α,β,x=2⁢α+β+1+n⁢n⁢α−β⁢JacobiP⁡n,α,β,x2⁢n+α+β+2⁢2⁢n+α+β+2⁢α+β+1+n⁢n+β⁢n+α⁢JacobiP⁡n−1,α,β,x2⁢n+α+β⁢2⁢n+1+α+β−2⁢α+β+1+n⁢n+1⁢n⁢JacobiP⁡n+1,α,β,x2⁢n+α+β+2⁢2⁢n+1+α+β
GetInfo⁡HermiteH⁡n,x,hypergeom
∂2∂x2HermiteH⁡n,x−2⁢x⁢∂∂xHermiteH⁡n,x+2⁢n⁢HermiteH⁡n,x=0,_B⁡n=−1n
GetInfo⁡HermiteH⁡n,x,structural
∂∂xHermiteH⁡n,x=2⁢n⁢HermiteH⁡n−1,x
GetInfo⁡HermiteH⁡n,x,derivative
GetInfo⁡ChebyshevT⁡n,x,structural
−x2+1⁢∂∂xChebyshevT⁡n,x=n⁢ChebyshevT⁡n−1,x2−n⁢ChebyshevT⁡n+1,x2
GetInfo⁡ChebyshevT⁡n,x,derivative
∂∂xChebyshevT⁡n,x=n⁢ChebyshevU⁡n−1,x
See Also
ChebyshevT
HermiteH
JacobiP
LaguerreL
Download Help Document
What kind of issue would you like to report? (Optional)