Hermite Form - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LinearAlgebra[Generic]

  

HermiteForm

  

compute the Hermite form of a Matrix

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

HermiteForm[E](B)

HermiteForm[E](B,output=out)

Parameters

E

-

the domain of computation, a Euclidean domain

B

-

m x n Matrix of values in E

out

-

one of H, U or a list containing one or more of these names

Description

• 

Given an m x n Matrix B of values in E, HermiteForm[E](B) returns the Hermite form H of B, an m x n Matrix of values in E.

• 

The Hermite normal form Matrix H satisfies:

(1) H is row-equivalent to B and H is in row echelon form

(2) The bottom-most nonzero entry p[j] = H[b,j] in each column j is unit normal, and either H[i,j]=0 or the Euclidean norm of H[i,j] where i<b is less than Euclidean norm of p[j]

(3) If B is n x n square Matrix, then prod(H[i,i],i=1..n) = u*det(B) where u is a unit in E

• 

The uniqueness of H depends on the uniqueness of the remainder operation in E. For example, if E is the ring of integers, and a and b are integers, and the remainder of a / b is in the positive range 0..abs(b)-1, then H is unique. If Maple's irem function is used, as in the example below, because the remainder is in the range 1-abs(b)..abs(b)-1, H is not unique.

• 

The (indexed) parameter E, which specifies the domain of computation, a Euclidean domain, must be a Maple table/module which has the following values/exports:

  

E[`0`]: a constant for the zero of the ring E

  

E[`1`]: a constant for the (multiplicative) identity of E

  

E[`+`]: a procedure for adding elements of E (nary)

  

E[`-`]: a procedure for negating and subtracting elements of E (unary and binary)

  

E[`*`]: a procedure for multiplying two elements of E (commutative)

  

E[`=`]: a boolean procedure for testing if two elements in F are equal

  

E[Quo]: a procedure which computes the quotient of a / b. E[Quo](a,b,'r') computes the quotient q of a / b and optionally assigns r the remainder satisfying a = b q + r.

  

E[Rem]: a procedure for finding the remainder of a / b. E[Rem(a,b,'q') computes the remainder r of a / b and optionally assigns q the quotient satisfying a = b q + r.

  

E[Gcdex]: a procedure for finding the gcd g of a and b, an element of E. E[Gcdex](a,b,'s','t') computes the gcd of a and b and optionally assigns s and t elements of E satisfying s a + t b = g.

  

E[UnitPart]: a procedure for returning the unit part of an element in E

  

E[EuclideanNorm]: a procedure for computing the Euclidean norm of an element in E, a non-negative integer.

• 

For a,b in E, b non-zero, the remainder r and quotient q satisfy a = b q + r and r = 0 or EuclideanNorm(r) < EuclideanNorm(b).

• 

For non-zero a,b in E, units u,v in E, the Euclidean norm satisfies:

  

EuclideanNorm(a b) >= EuclideanNorm(a)

  

EuclideanNorm(u) = EuclideanNorm(v)

  

EuclideanNorm(u a) = EuclideanNorm(a)

• 

The Hermite form is computed by putting the principal block H[1..i,1..i] into Hermite form using elementary Row operations. This algorithm does at most O(n^4) operations in E.

Examples

withLinearAlgebraGeneric&colon;

Z`0`,Z`1`,Z`+`,Z`-`,Z`*`,Z`=`0,1,`+`,`-`,`*`,`=`&colon;

ZGcdexigcdex&colon;

ZQuo,ZRemiquo,irem&colon;

ZUnitPartsign&colon;

ZEuclideanNormabs&colon;

AMatrix1&comma;2&comma;3&comma;4&comma;5&comma;2&comma;3&comma;4&comma;5&comma;6&comma;4&comma;1&comma;2&comma;5&comma;2&comma;1&comma;4&comma;2&comma;1&comma;2

A123452345641−2−5−2−1−4−212

(1)

HHermiteFormZA

H10−1−2−30123400511300006

(2)

H,UHermiteFormZA&comma;output=H&comma;U

H,U10−1−2−30123400511300006,−32002−100−1512−2110−710

(3)

MatrixMatrixMultiplyZU&comma;A

10−1−2−30123400511300006

(4)

Using positive range for the remainder, given by modp(a,b).

Z[Quo] := proc(a,b,r) local q,rr; rr := Z[Rem](a,b,'q'); if nargs=3 then r := rr; end if; q; end proc:

Z[Rem] := proc(a,b,q) local r,qq; r := modp(a,b); if nargs=3 then q := iquo(a-r,b); end if; r; end proc:

HHermiteFormZA

H104900123400511300006

(5)

UHermiteFormZA&comma;output=U

U−1814−212−100−1512−2110−710

(6)

MatrixMatrixMultiplyZU&comma;A

104900123400511300006

(7)

See Also

Euclidean Norm

LinearAlgebra[Generic]

LinearAlgebra[HermiteForm]

 


Download Help Document