NumImvolutions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

GroupTheory

  

NumInvolutions

  

compute the number of involutions of a group

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

NumInvolutions(G)

Parameters

G

-

: Group : a group object

Description

• 

An involution of a group G is an element of order equal to 2. The involutions of a group exert significant control over the structure of the group.

• 

Note that a group of odd order has no involutions.

• 

The NumInvolutions(G) command computes the number of involutions of the group G, if possible.

Examples

withGroupTheory:

GDihedralGroup5

GD5

(1)

NumInvolutionsG

5

(2)

NumInvolutionsQuaternionGroup5

1

(3)

NumInvolutionsQuasicyclicGroup2

1

(4)

NumInvolutionsFrobeniusGroup21,1

0

(5)

NumInvolutionsSemiDihedralGroupn

1+2n

(6)

NumInvolutionsSL2,5

1

(7)

NumInvolutionsSymm30

606917269909048575

(8)

NumInvolutionsAltn

3n4hypergeom1,1n4,n4+32,n4+54,n4+74,32,2,16

(9)

NumInvolutionsBabyMonster

512299100893413375

(10)

itAllSmallGroups12,form=permgroup,output=iterator

it⟨Small Groups Iterator: 12/1 .. 12/5⟩

(11)

GDirectProductseqit:

NumInvolutionsG

511

(12)

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[BabyMonster]

GroupTheory[ConjugacyClasses]

GroupTheory[DihedralGroup]

GroupTheory[FrobeniusGroup]

GroupTheory[GroupOrder]

GroupTheory[QuasicyclicGroup]

GroupTheory[QuaternionGroup]

GroupTheory[SemiDihedralGroup]

GroupTheory[SpecialLinearGroup]

GroupTheory[SymmetricGroup]

with

 


Download Help Document