The time-domain transformations are done on the state-space matrices. The following describes each of the transformations (the foh and zoh transformations handle singular A matrices). The primed matrices represent the transformed matrices. I is the identity matrix.
A' = I + A*T
B' = B*T
C' = C
D' = D
A' = (I - A*T)^(-1)
B' = A'.B*T
C' = C.A'
D' = D + C'.B*T
M = (I - A*T/2)^(-1)
A' = (I + A*T/2).M
B' = M.B*sqrt(T)
C' = C.M*sqrt(T)
D' = D + sqrt(T)/2*C'.B
A' = exp(A*T)
B' = A^(-1).(exp(A*T) - I).B
C' = C
D' = D
A' = exp(A*T)
B' = A^(-2)/T.(exp(A*T) - I)^2.B
C' = C
D' = D + C.(A^(-2)/T.(exp(A*T) - I) - A^(-1)).B