RootToCartanSubalgebraElementH - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : RootToCartanSubalgebraElementH

LieAlgebras[RootToCartanSubalgebraElementH] - associate to each positive root of a simple Lie algebra a vector in the Cartan subalgebra

Calling Sequences

     RootToCartanSubalgebraElementH(α , RSD)

Parameters

     α     - a vector, defining a positive (or negative) root of a simple Lie algebra

     RSD   - a table, defining the root space decomposition of a simple Lie algebra

 

 

Description

Examples

Description

• 

 Let g be a simple Lie algebra, h a Cartan subalgebra, and 𝔤 = 𝔥 α  ΔRα the root space decomposition of g with respect to h. For each root α Δ, there are vectors Xα Rα , Xα Rα and Hα 𝔥  such that

 [Hα , Xα] = 2 Xα,  [Hα , Xα]  = 2 Xα  and Xα , Xα = Hα .

These conditions uniquely determine Hα.  Note that the vectors Xα , Xα , Hα define the 3-dimensional Lie algebra sl2. The assignment α  Hα  is used to calculate the Cartan matrix for the Lie algebra 𝔤.

• 

The procedure RootToCartanSubalgebraElementH(α , RSD) returns the vector Hα.

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We consider the Lie algebra su3,3. This is the 24-dimensional real Lie algebra of 6×6 complex matrices A which are trace-free and skew-Hermitian with respect to the quadratic form Q=0I3I30 . We use the command SimpleLieAlgebraData to initialize this Lie algebra.

 

LD1SimpleLieAlgebraDatasu(3,3),su33,labelformat=gl,labels=E,ω:

DGsetupLD1

Lie algebra: su33

(2.1)

 

We use the command SimpleLieAlgebraProperties to obtain the Cartan subalgebra, the root space decomposition, and the simple roots.

su33 > 

PSimpleLieAlgebraPropertiessu33:

 

The result P is a table. Here is the Cartan subalgebra for su3, 3.

su33 > 

CSAPCartanSubalgebra

CSA:=E11,E22,E33,Ei11,Ei22

(2.2)

 

Here is the root space decomposition for su3,3.

su33 > 

RSDevalPRootSpaceDecomposition

RSD:=table1,0,1,2I,I=E16+IEi16,1,1,0,I,I=E15IEi15,1,0,1,2I,I=E31+IEi31,1,1,0,I,I=E12IEi12,0,0,2,0,0=Ei63,0,1,1,I,2I=E53IEi53,0,2,0,0,0=Ei52,1,1,0,I,I=E42IEi42,1,0,1,2I,I=E13+IEi13,0,1,1,I,2I=E23IEi23,0,1,1,I,2I=E53+IEi53,2,0,0,0,0=Ei14,0,1,1,I,2I=E32IEi32,1,0,1,2I,I=E31IEi31,1,1,0,I,I=E42+IEi42,0,1,1,I,2I=E23+IEi23,0,1,1,I,2I=E26+IEi26,1,0,1,2I,I=E13IEi13,1,1,0,I,I=E12+IEi12,1,0,1,2I,I=E43IEi43,1,0,1,2I,I=E43+IEi43,0,2,0,0,0=Ei25,1,0,1,2I,I=E16IEi16,2,0,0,0,0=Ei41,1,1,0,I,I=E21IEi21,0,1,1,I,2I=E32+IEi32,1,1,0,I,I=E15+IEi15,0,0,2,0,0=Ei36,1,1,0,I,I=E21+IEi21,0,1,1,I,2I=E26IEi26

(2.3)

 

Here are the positive roots.

su33 > 

PRPPositiveRoots

 

Let us find Hα,where α is the first root  

su33 > 

αPR1

su33 > 

HRootToCartanSubalgebraElementHα,RSD

H:=I2Ei11+I2Ei22+12E1112E22

(2.4)

 

We check that H is in the Cartan subalgebra.

su33 > 

GetComponentsH,CSA

12,12,0,12I,12I

(2.5)

 

Here are the root spaces for α and α .

su33 > 

XRootSpaceα,RSD

X:=E12+IEi12

(2.6)
su33 > 

YRootSpaceα,RSD

Y:=E21+IEi21

(2.7)

 

We check that H , X, Y defines a Lie subalgebra.

su33 > 

LieAlgebraDataH,X,Y

e1,e2=2e2,e1,e3=2e3,e2,e3=4e1

(2.8)

 

If we scale the vectors X and Y then the structure equations take the standard form for sl2. 

su33 > 

LieAlgebraDataH,12X,12Y

e1,e2=2e2,e1,e3=2e3,e2,e3=e1

(2.9)

 

Example 2.

We illustrate how to use RootToCartanSubalgebraElementH(α , RSD) to calculate the Cartan matrix for su3, 3. We first calculate the Hα for the simple roots α.

su33 > 

SRPSimpleRoots

su33 > 

HalphamapRootToCartanSubalgebraElementH,SR,RSD

Halpha:=I2Ei11+I2Ei22+12E1112E22,I2Ei22+12E2212E33,E33,I2Ei22+12E2212E33,I2Ei11I2Ei22+12E1112E22

(2.10)

 

Then we calculate the Killing form , restricted to subspace [H1, H2, H3, H4, H5].

su33 > 

BKillingHalpha

 

The Cartan matrix is given by normalizing the entries of B.

su33 > 

CMatrix5,5,i,j2Bi,jBi,i

 

The Lie algebra su3,3 is a rank 5 simple Lie algebra of type "A". The matrix in  is therefore correct.

su33 > 

CartanMatrixA,5

 

See Also

DifferentialGeometry

CartanMatrix

Killing

LieAlgebraData

RootSpace

SimpleLieAlgebraData

SimpleLieAlgebraProperties