DifferentialGeometry/LieAlgebras/Query/CartanSubalgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/CartanSubalgebra

Query[CartanSubalgebra] - check if a list of vectors defines a Cartan subalgebra

Calling Sequences

     Query()

Parameters

     A        - a list of vectors, defining a subspace of a Lie algebra

     options  - one or more of the keyword arguments rank = n (where is a positive integer), algebratype  = "Semisimple" or  algebratype  = "Simple"

 

Description

Examples

Description

• 

Let be a Lie algebra. A Cartan subalgebra h is a nilpotent subalgebra whose normalizer in g is itself, that is,  .

• 

If the Lie algebra  is semi-simple and the rank of the Lie algebra is then any Cartan subalgebra is of dimension and is Abelian. This simplifies checking if a given subspace of vectors is a Cartan subalgebra ( the nilpotent character of h need not be verified).

Examples

 

Example 1.

We test if certain subalgebras of are Cartan subalgebras. First define the standard matrix representation for as the space of trace-free matrices.

 

 

Calculate the structure equations for these matrices and initialize the resulting Lie algebra.

(2.1)

(2.2)

 

Let's check that is semi-simple.

sl3 > 

(2.3)

 

Test to see if a list of vectors defines a Cartan subalgebra.

sl3 > 

(2.4)
sl3 > 

(2.5)

 

 Since  has 2 elements, this implies that the rank of   is 2. We can use this information to simplify checking that other subalgebras are Cartan subalgebras

sl3 > 

(2.6)
sl3 > 

(2.7)

 

Here is a 2-dimensional Abelian subalgebra which is not self-normalizing and therefore not a Cartan subalgebra.

sl3 > 

(2.8)
sl3 > 

(2.9)
sl3 > 

(2.10)

 

Example 2.

The notion of a Cartan subalgebra is not restricted to semi-simple Lie algebras. We define a solvable Lie algebra and test to see if some subalgebras are Cartan subalgebras.

sl3 > 

(2.11)
sl3 > 

(2.12)
alg > 

(2.13)
alg > 

(2.14)
alg > 

(2.15)

 

Any subalgebra which is an ideal cannot be a Cartan subalgebra.

alg > 

(2.16)
alg > 

(2.17)
alg > 

(2.18)

See Also

DifferentialGeometry

CartanSubalgebra

LieAlgebraData

Query[Ideal]

Query[Solvable]

Query[Subalgebra]

Query[Semisimple]

 


Download Help Document