Cartan Matrices and Dynkin Diagram Details - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : Cartan Matrices and Dynkin Diagram Details

Details for Cartan matrices and Dynkin diagrams

 

 

Description

Code

Root Type A

Root Type B

Root Type C

Root Type D

Exceptional Root Types

Description

 

• 

This document contains a list of all Cartan matrices and Dynkin diagrams for all classical root types of rankand for all exceptional root types.

• 

 Let be a set of simple roots and let be the inner product on the roots induced by the Killing form. The Cartan matrix is given by

• 

 From the Cartan matrix one can calculate the number of lines connecting to  as . The relative lengths of the root vectors can be found as the ratios (**). Set  

• 

 The edge matrix and the root length vector clearly determine the Dynkin diagram.  Conversely, the equations (*) and (**), together with the facts that  = 2 and  for uniquely determine the Cartan matrix from the edge matrix and the root length vector For additional details see, for example, W. A. de Graaf, Lie Algebras: Theory and Algorithms, pages 167-168.

Code

 

with(DifferentialGeometry): with(LieAlgebras):

 

We give 3 simple programs. The first calculates the edge matrix and the second the relative lengths  of the roots. The third program re-constructs the Cartan matrix from the edge matrix and the relative length vector.

 

EdgeMatrix := proc(C) local n;

description `a procedure to find the adjacency matrix for the Dynkin diagram from the Cartan matrix`;

n := LinearAlgebra:-ColumnDimension(C);

Matrix(n, n, (i, j) -> C[i, j]*C[j, i]);

end:

RootLengths := proc(C) local n, Eq, soln;

description `a procedure to find the ratio of the root lengths for the Dynkin diagram from the Cartan matrix`;

n := LinearAlgebra:-ColumnDimension(C);

Eq := {seq(seq(C[j, i]*x||i/x||j = C[i, j], i = 1 .. n) ,j = 1 .. n)}:

soln := solve(Eq, {seq(x||i , i = 1 .. n)});

eval(Vector([seq(x||i/x||(i+1), i = 1 .. n-1)]), soln)

end:

DynkinDiagramDataToCartanMatrix := proc(Edges, L) local n, C, vars, Eq1, Eq2, Eq3, soln;

description `a procedure to find the Cartan matrix from the Dynkin diagram (edge matrix and root length rations)`;

n := LinearAlgebra:-ColumnDimension(Edges);

C := Matrix(n, n, proc(i, j) if i=j then 2 else c||i||j fi end); vars := indets(C);

Eq1:= {seq(seq( C[i,j]*C[j,i] = Edges[i,j], j = i+1..n), i = 1..n)};

Eq2 := {seq(seq(C[j,i]*mul(L[k], k = i.. j-1) = C[i,j], j = i+1..n) , i = 1..n-1)};

Eq3 := {seq(v<=0 ,v =vars), seq(v >= -3, v=vars)};

soln := solve(Eq1 union Eq2 union Eq3, vars);

eval(C, [soln][1]);

end:

Root Type A

Root Type

Cartan Matrix

 Dynkin Diagram

--

--

 

 

 

 

   

 

Here is the Cartan matrix for and the corresponding edge matric and root length vector

C := CartanMatrix("A", 4);

E := EdgeMatrix(C); L := RootLengths(C);

 

Re -construct the Cartan matrix.

DynkinDiagramDataToCartanMatrix(E, L);

Root Type B

Root

Type

Cartan Matrix

 Dynkin Diagram

 

Here is the Cartan matrix for and the corresponding edge matrix and root length vector.

C := CartanMatrix("B", 4);

E := EdgeMatrix(C); L := RootLengths(C);

 

Re -construct the Cartan matrix.

DynkinDiagramDataToCartanMatrix(E, L);

Root Type C

Root Type

Cartan Matrix

 Dynkin Diagram

Here is the  Cartan matrix for and the corresponding edge matrix and root length vector.

C := CartanMatrix("C", 4);

E := EdgeMatrix(C); L := RootLengths(C);

 

Re -construct the Cartan matrix. 

DynkinDiagramDataToCartanMatrix(E, L);

Root Type D

 

 

 

Root

Type

Cartan Matrix

 Dynkin Diagram

 

 

 

Here is the Cartan matrix for and the corresponding edge matrix and root length vector.

C := CartanMatrix("D", 4);

E := EdgeMatrix(C); L := RootLengths(C);

 

Re -construct the Cartan matrix.

DynkinDiagramDataToCartanMatrix(E, L);

Exceptional Root Types

 

 

Root Type

Cartan Matrix

 Dynkin Diagram

--

--

 

 

 

 

 

 

Here is the Cartan matrix for and the corresponding edge matrix and root length vector.

C := CartanMatrix("E", 6);

E := EdgeMatrix(C); L := RootLengths(C);

 

Re -construct the Cartan matrix.

DynkinDiagramDataToCartanMatrix(E, L);

 

See Also

DifferentialGeometry

CartanMatrix

CartanSubalgebra

DynkinDiagram

RootSpaceDecomposition

SimpleRoots


Download Help Document