Classify - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

DeepLearning

  

Classify

  

train and use classifier for arbitrary data

 

Calling Sequence

Parameters

Options

Description

Compatibility

Calling Sequence

Classify( data, output )

Parameters

data

-

DataFrame, Matrix, or list of Matrices or Vectors

output

-

DataSeries, Matrix, or list

options

-

zero or more options as specified below

Options

• 

hidden_units=auto or list(integer)

  

Specifies the depth and number of interior nodes for the neural network underlying this classifier.

• 

num_classes=auto or posint

  

Specifies the number of distinct categories into which the data should be classified.

Description

• 

The Classify command accepts a set of training data which has been classified into a finite set of classes, trains a neural network model for this classification, and returns a classifier function which can be applied to arbitrary additional data.

training_set := Import("example/iris_training.csv", base=datadir);

(1)

test_set := Import("example/iris_test.csv", base=datadir);

(2)

classifier := DeepLearning:-Classify( training_set[1..4], training_set[5] );

classifier( test_set[1..4], test_set[5] );

new_sample := DataSeries([4.9,3.1,1.5,0.1], labels=["SepalLength","SepalWidth","PetalLength","PetalWidth"]);

(3)

classifier( new_sample );

classifier( new_sample, output = probabilities );

Compatibility

• 

The DeepLearning[Classify] command was introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

DeepLearning

DeepLearning,DNNClassifier

 


Download Help Document