GeneralizedLieBracket - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


JetCalculus[GeneralizedLieBracket] - find the Lie bracket of two generalized vector fields

Calling Sequences

     GeneralizedLieBracket(X, Y)

Parameters

     X,Y       - generalized vector fields on a fiber bundle

 

Description

Examples

Description

• 

 Let be a fiber bundle and let  be the -th jet bundle of Let  be a generalized vector field of order and let be a generalized vector field of order . Then the generalized Lie bracket  is the generalized vector field calculated by applying the -th prolongation of the vector  to (the coefficients of) and subtracting the -th prolongation of the vector  applied to (the coefficients of) , that is, .

• 

The command GeneralizedLieBracket(X, Y) returns the generalized vector field .

• 

For applications to the generalized symmetries of integrable evolution equations such as the KdV equation, see the tutorial titled Recursion Operators For Integrable Evolution Equations.

• 

The command GeneralizedLieBracket is part of the DifferentialGeometry:-JetCalculus package.  It can be used in the form GeneralizedLieBracket(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-GeneralizedLieBracket(...).

Examples

 

Example 1.

First initialize the jet space for 2 independent variables and 1 dependent variable and prolong it to order 4.

 

Define 2 vector fields  and .

E1 > 

(2.1)
E1 > 

(2.2)

 

Compute the generalized Lie bracket .

E1 > 

(2.3)

 

We show how this result is obtained.  First prolong to the order of the coefficient in  namely 2. Apply the prolonged vector field to the coefficient of

E1 > 

(2.4)
E1 > 

(2.5)

 

Next prolong  to the order of the coefficient in (namely 4). Apply the prolonged vector field to the coefficient of .

E1 > 

(2.6)
E1 > 

(2.7)

 

The difference between term1 and term2 gives the coefficient of the generalized Lie bracket .

E1 > 

(2.8)

 

Example 2.

The generalized Lie bracket is not restricted to evolutionary (vertical) generalized vector fields.

E1 > 

(2.9)
E1 > 

(2.10)
E1 > 

(2.11)

 

Example 3.

The generalized Lie bracket for a pair of 1st order evolutionary vector fields coincides with the Jacobi bracket. For example:

E1 > 

E1 > 

E1 > 

(2.12)
E1 > 

(2.13)
E1 > 

(2.14)

See Also

DifferentialGeometry

JetCalculus

AssignVectorType

LieBracket

LieDerivative

Prolong

 


Download Help Document