ModularityMatrix - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GraphTheory

  

ModularityMatrix

  

construct modularity matrix

 

Calling Sequence

Parameters

Options

Description

Definition

Examples

Compatibility

Calling Sequence

ModularityMatrix(G, opts)

Parameters

G

-

graph

opts

-

(optional) one or more options as specified below

Options

• 

datatype=type

  

Specifies a datatype for the generated Matrix as described in rtable. The default is datatype=anything.

• 

order=one of C_order or Fortran_order

  

Specifies the order of the generated Matrix. The default is order=C_order.

• 

shape=name or list of names

  

Specifies the storage allocation for Matrix entries. Must be a name or list of names specifying one or more built-in or user-defined indexing functions. The default is shape=symmetric if G is undirected and shape=[] if G is directed.

Description

• 

ModularityMatrix(G) returns the modularity matrix of a graph G.

• 

The default output is an n by n Matrix with the following properties:

– 

By default datatype=anything and order=C_order

– 

If G is undirected, by default shape=symmetric

– 

If G is directed, by default shape=[]

Definition

• 

Let G be a graph and let m be its number of edges. The modularity matrix of G is defined as follows:

• 

If G is undirected, the entry i,j of this matrix is deg[i]*deg[j]/2/m where deg[i] is the degree of vertex i.

• 

If G is directed, the entry i,j of this matrix is indeg[i]*outdeg[j]/m where indeg[i] is the in-degree of vertex i and outdeg[j] is the out-degree of vertex j.

Examples

withGraphTheory:

GGraph1,2,3,4,Trail1,2,3,4,1

GGraph 1: an undirected graph with 4 vertices and 4 edges

(1)

ModularityMatrixG

12121212121212121212121212121212

(2)

Compatibility

• 

The GraphTheory[ModularityMatrix] command was introduced in Maple 2025.

• 

For more information on Maple 2025 changes, see Updates in Maple 2025.

See Also

AdjacencyMatrix

Degree

 


Download Help Document