Application Center - Maplesoft

App Preview:

Thermodynamic Calculations of Two-Stage Vapor Compression Refrigeration Cycle with Flash Chamber and Separate Vapor Mixing Intercooler

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application




Thermodynamic Calculations of  Two-Stage Vapor Compression Refrigeration Cycle with Flash Chamber and Separate Vapor Mixing Intercooler

Author: Volodymyr Voloshchuk

Vl.volodya@gmail.com

Introduction

 

In the event that a high COP of a refrigeration cycle is of greater importance compared to other factors, it is possible to significantly increase the COP of a basic cycle through the use of a multistage vapor compression cycle. This is especially true when the pressure ratio between the heat rejection and heat absorption pressures is large 5 or more.
Multistaging involves one or more intermediate pressures between the heat rejection and heat absorption pressures, and a series of compressors operating between successive pressure intervals.
One type of multi-compressor vapor compression cycle includes a mixing chamber where saturated vapor from the flash chamber mixes with the vapor leaving the low pressure stage compressor. This vapor-mixing chamber acts as a regenerative intercooler since it cools the superheated vapor leaving the low-pressure stage compressor using lower temperature saturated workin fluid, mixing the two prior to the next stage of compression.

This type of refrigeration cycle is analysed in the following calculation.

Creation functions on properties and processes of working fluids

 

restart

with(ThermophysicalData); with(Units[Standard]); with(plots)

 

Vapor pressure on the saturated line as a function of temperature

PSVTwf := proc (T, wf) options operator, arrow; Property(P, temperature = T, Q = 1, wf) end proc

 

Liquid pressure on the saturated line as a function of temperature

PSLTwf := proc (T, wf) options operator, arrow; Property(P, temperature = T, Q = 0, wf) end proc

 

Liquid temperature on the saturated line as a function of pressure

TSLPwf := proc (p, wf) options operator, arrow; Property(T, pressure = p, Q = 0, wf) end proc

 

Vapor temperature on the saturated line as a function of pressure

TSVPwf := proc (p, wf) options operator, arrow; Property(T, pressure = p, Q = 1, wf) end proc

 

Liquid specific enthalpy on the saturated line as a function of temperature

HSLTwf := proc (T, wf) options operator, arrow; Property(enthalpy, temperature = T, Q = 0, wf) end proc

 

Vapor specific enthalpy on the saturated line as a function of temperature

HSVTwf := proc (T, wf) options operator, arrow; Property(enthalpy, temperature = T, Q = 1, wf) end proc

 

Liquid specific enthalpy on the saturated line as a function of pressure

HSLPwf := proc (p, wf) options operator, arrow; Property(enthalpy, pressure = p, Q = 0, wf) end proc

 

Vapor specific enthalpy on the saturated line as a function of pressure

HSVPwf := proc (p, wf) options operator, arrow; Property(enthalpy, pressure = p, Q = 1, wf) end proc

 

Liquid specific entropy on the saturated line as a function of temperature

SSLTwf := proc (T, wf) options operator, arrow; Property(entropy, temperature = T, Q = 0, wf) end proc

 

Vapor specific entropy on the saturated line as a function of temperature

SSVTwf := proc (T, wf) options operator, arrow; Property(entropy, temperature = T, Q = 1, wf) end proc

 

Liquid specific entropy on the saturated line as a function of pressure

SSLPwf := proc (p, wf) options operator, arrow; Property(entropy, pressure = p, Q = 0, wf) end proc

 

Vapor specific entropy on the saturated line as a function of pressure

SSVPwf := proc (p, wf) options operator, arrow; Property(entropy, pressure = p, Q = 1, wf) end proc

 

Temperature as a function of pressure and specific entropy

TPSwf := proc (p, s, wf) options operator, arrow; Property(T, pressure = p, entropy = s, wf) end proc

 

Temperature as a function of pressure and specific enthalpy

TPHwf := proc (p, h, wf) options operator, arrow; Property(T, pressure = p, enthalpy = h, wf) end proc

 

Specific enthalpy as a function of pressure and temperature

HPTwf := proc (p, T, wf) options operator, arrow; Property(H, pressure = p, temperature = T, wf) end proc

 

Specific entropy as a function of pressure and temperature

SPTwf := proc (p, T, wf) options operator, arrow; Property(S, pressure = p, temperature = T, wf) end proc

 

HCOMPRESSIONPTPEFFwf := proc (p1, T1, p2, eff, wf) local h1, s1, s2_is, T2_is, h2_is; h1 := HPTwf(p1, T1, wf); s1 := SPTwf(p1, T1, wf); s2_is := s1; T2_is := TPSwf(p2, s2_is, wf); h2_is := HPTwf(p2, T2_is, wf); return h1+(h2_is-h1)/eff end proc

 

 

Input Data

 

Temperature of heat source

T__in := ((-10)+273.15)*Unit('K')

263.15*Units:-Unit(K)

(3.1)

Temperature of heat consumption

T__out := (80+273.15)*Unit('K')

353.15*Units:-Unit(K)

(3.2)

Temperature difference in the evaporator

`δT__EV` := 2*Unit('K')

2*Units:-Unit(K)

(3.3)

Temperature difference in the condenser

`δT__CD` := 2*Unit('K')

2*Units:-Unit(K)

(3.4)

Isentropic efficiency of the compressor

`η__comp` := .8

.8

(3.5)

Pressure increase in compressor 1

`π__1` := 3

3

(3.6)

Working fluid

wf := R134a

R134a

(3.7)

 

Calculations

 

Temperature of  the working fluid at the evaporator outlet

`T__1,L` := T__in-`δT__EV`

261.15*Units:-Unit(K)

(4.1)

Pressure of  the working fluid at the evaporator outlet

`p__1,L` := PSVTwf(`T__1,L`, wf)

185244.1558*Units:-Unit(Pa)

(4.2)

Specific enthalpy of  the working fluid at the evaporator outlet

`h__1,L` := HSVTwf(`T__1,L`, wf)

391454.9993*Units:-Unit(J/kg)

(4.3)

Specific entropy of  the working fluid at the evaporator outlet

`s__1,L` := SSVTwf(`T__1,L`, wf)

1734.794496*Units:-Unit(J/(kg*K))

(4.4)

Pressure of  the working fluid at the flash intercooler outlet

`p__2,L` := `p__1,L`*`π__1`

555732.4674*Units:-Unit(Pa)

(4.5)

Pressure of  the working fluid at the flash intercooler outlet

`p__3,L` := `p__2,L`

 

555732.4674*Units:-Unit(Pa)

(4.6)

 

Temperature of  the working fluid at the flash intercooler outlet

`T__3,L` := TSLPwf(`p__3,L`, wf)

292.2364673*Units:-Unit(K)

(4.7)

Specific enthalpy of  the working fluid at the flash intercooler outlet

`h__3,L` := HSLTwf(`T__3,L`, wf)

226184.5457*Units:-Unit(J/kg)

(4.8)

Specific enthalpy of  the working fluid at the flash intercooler outlet

`s__3,L` := SSLTwf(`T__3,L`, wf)

1091.901396*Units:-Unit(J/(kg*K))

(4.9)

Pressure of  the working fluid at the evaporator intlet

`p__4,L` := `p__1,L`

185244.1558*Units:-Unit(Pa)

(4.10)

Specific enthalpy of  the working fluid at the evaporator intlet

`h__4,L` := `h__3,L`

226184.5457*Units:-Unit(J/kg)

(4.11)

Temperature of  the working fluid at the evaporator intlet

`T__4,L` := TPHwf(`p__4,L`, `h__4,L`, wf)

261.1500000*Units:-Unit(K)

(4.12)

Specific enthalpy of saturated liquid of  the working fluid at the evaporator inlet

h[sl, 4, L] := HSLPwf(`p__4,L`, wf)

184065.9050*Units:-Unit(J/kg)

(4.13)

Quality of the working fluid at the evaporator intlet

x[4, L] := (`h__4,L`-h[sl, 4, L])/(`h__1,L`-h[sl, 4, L])

 

.2030899496

(4.14)

 

Specific entropy of saturated liquid of  the working fluid at the evaporator inlet

`s__sl,4,L` := SSLPwf(`p__4,L`, wf)

940.6566660*Units:-Unit(J/(kg*K))

(4.15)

Specific entropy of  the working fluid at the evaporator inlet

s[4, L] := `s__sl,4,L`+x[4, L]*(`s__1,L`-`s__sl,4,L`)

1101.938078*Units:-Unit(J/(kg*K))

(4.16)

Specific entropy of  the working fluid at the compressor 1 outlet  after isentropic compression

s[2, L, is] := `s__1,L`

 

1734.794496*Units:-Unit(J/(kg*K))

(4.17)

 

Temperature of  the working fluid at the compressor 1 outlet  after isentropic compression

T[2, L, is] := TPSwf(`p__2,L`, s[2, L, is], wf)

 

297.1375245*Units:-Unit(K)

(4.18)

 

Specific enthalpy of  the working fluid at the compressor 1 outlet  after isentropic compression

h[2, L, is] := HPTwf(`p__2,L`, T[2, L, is], wf)

 

414101.3458*Units:-Unit(J/kg)

(4.19)

 

Enhtalpy change in the compressor  after isentropic compression

l[c1, is] := h[2, L, is]-`h__1,L`

 

22646.3465*Units:-Unit(J/kg)

(4.20)

 

Enhtalpy change in the compressor 1 after actual compression

l[c1] := (h[2, L, is]-`h__1,L`)/`η__comp`

 

28307.93312*Units:-Unit(J/kg)

(4.21)

 

Specific enthalpy of  the working fluid at the compressor 1 outlet  after actual compression

h[2, L] := `h__1,L`+l[c1]

 

419762.9324*Units:-Unit(J/kg)

(4.22)

 

Specific enthalpy of  the working fluid at the compressor 1 outlet  after actual compression

T[2, L] := TPHwf(`p__2,L`, h[2, L], wf)

 

302.9557886*Units:-Unit(K)

(4.23)

 

Specific entropy of  the working fluid at the compressor 1 outlet  after actual compression 

s[2, L] := SPTwf(`p__2,L`, T[2, L], wf)

 

1753.664457*Units:-Unit(J/(kg*K))

(4.24)

 

Pressure of  the working fluid at the vapor mixing intercooler inlet

p__5 := `p__3,L`

 

555732.4674*Units:-Unit(Pa)

(4.25)

 

Temperature of  the working fluid at the vapor mixing intercooler inlet

T[5] := TSVPwf(p__5, wf)

 

292.2364673*Units:-Unit(K)

(4.26)

 

Specific enthalpy of  the working fluid at the vapor mixing intercooler inlet

h[5] := HSVTwf(T[5], wf)

 

409265.9141*Units:-Unit(J/kg)

(4.27)

 

Specific entropy of  the working fluid at the vapor mixing intercooler inlet

s[5] := SSVTwf(T[5], wf)

 

1718.385045*Units:-Unit(J/(kg*K))

(4.28)

 

Temperature of the working fluid at the condenser outlet

`T__3.H` := T__out-`δT__CD`

351.15*Units:-Unit(K)

(4.29)

Pressure of  the working fluid at the condenser outlet

p[3, H] := PSLTwf(`T__3.H`, wf)

 

2522849.986*Units:-Unit(Pa)

(4.30)

 

Specific enthalpy of  the working fluid at the condenser outlet

h[3, H] := HSLTwf(`T__3.H`, wf)

 

318627.2633*Units:-Unit(J/kg)

(4.31)

 

Specific entropy of  the working fluid at the condenser outlet

s[3, H] := SSLTwf(`T__3.H`, wf)

 

1373.288420*Units:-Unit(J/(kg*K))

(4.32)

 

Pressure of  the working fluid at the compressor 2 outlet

p[2, H] := p[3, H]

 

2522849.986*Units:-Unit(Pa)

(4.33)

 

Pressure of  the working fluid at the compressor 2 inlet

p[1, H] := `p__2,L`

 

555732.4674*Units:-Unit(Pa)

(4.34)

 

Pressure increase in the compressor 2

`π__2` := p[2, H]/p[1, H]

 

4.539684351

(4.35)

 

Specific enthalpy of  the working fluid at the flash chamber intlet

`h__4,H` := h[3, H]

318627.2633*Units:-Unit(J/kg)

(4.36)

Pressure of  the working fluid at the flash chamber intlet

`p__4,H` := `p__3,L`

555732.4674*Units:-Unit(Pa)

(4.37)

Temperature of  the working fluid at the flash chamber intlet

`T__4,H` := TPHwf(`p__4,H`, `h__4,H`, wf)

292.2364673*Units:-Unit(K)

(4.38)

Specific enthalpy of saturated liquid of  the working fluid at the flash chamber inlet

h[sl, 4, H] := HSLPwf(`p__4,H`, wf)

226184.5457*Units:-Unit(J/kg)

(4.39)

Specific enthalpy of saturated vapor of  the working fluid at the flash chamber inlet

h[ss, 4, H] := HSVPwf(`p__4,H`, wf)

409265.9141*Units:-Unit(J/kg)

(4.40)

Quality of the working fluid at the flash chamber intlet

x[4, H] := (`h__4,H`-h[sl, 4, H])/(h[ss, 4, H]-h[sl, 4, H])

 

.5049269536

(4.41)

 

Specific entropy of saturated liquid of  the working fluid at the flash chamber inlet

`s__sl,4,H` := SSLPwf(`p__4,H`, wf)

1091.901396*Units:-Unit(J/(kg*K))

(4.42)

Specific entropy of saturated liquid of  the working fluid at the flash chamber inlet

`s__ss,4,L` := SSVPwf(`p__4,H`, wf)

1718.385045*Units:-Unit(J/(kg*K))

(4.43)

Specific entropy of  the working fluid at the flash chamber inlet

s[4, H] := `s__sl,4,H`+x[4, H]*(`s__ss,4,L`-`s__sl,4,H`)

1408.229876*Units:-Unit(J/(kg*K))

(4.44)

Ratio of mass flow rates between the high pressure circuit and that of the low pressure circuit

phi := (h[5]-`h__3,L`)/(h[5]-`h__4,H`)

 

2.019903946

(4.45)

 

Specific enthalpy of  the working fluid at the compressor 2 intlet 

`h__1,H` := ((phi-1)*h[5]+h[2, L])/phi

 

414462.7049*Units:-Unit(J/kg)

(4.46)

 

Temperature of  the working fluid at the compressor 2 intlet

`T__1,H` := TPHwf(p[1, H], `h__1,H`, wf)

 

297.5067253*Units:-Unit(K)

(4.47)

 

Specific entropy of  the working fluid at the compressor 2 intlet

s[1, H] := SPTwf(p[1, H], `T__1,H`, wf)

 

1736.009875*Units:-Unit(J/(kg*K))

(4.48)

 

Specific entropy of  the working fluid at the compressor 2 outlet  after isentropic compression

s[2, H, is] := s[1, H]

 

1736.009875*Units:-Unit(J/(kg*K))

(4.49)

 

Temperature of  the working fluid at the compressor 2 outlet  after isentropic compression

T[2, H, is] := TPSwf(p[2, H], s[2, H, is], wf)

 

361.6458604*Units:-Unit(K)

(4.50)

 

Specific enthalpy of  the working fluid at the compressor 2 outlet  after isentropic compression

h[2, H, is] := HPTwf(p[2, H], T[2, H, is], wf)

 

446239.4514*Units:-Unit(J/kg)

(4.51)

 

Enhtalpy change in the compressor 2 after isentropic compression

l[c2, is] := h[2, H, is]-`h__1,H`

 

31776.7465*Units:-Unit(J/kg)

(4.52)

 

Enhtalpy change in the compressor 2 after actual compression

l[c2] := (h[2, H, is]-`h__1,H`)/`η__comp`

 

39720.93312*Units:-Unit(J/kg)

(4.53)

 

Specific enthalpy of  the working fluid at the compressor 2 outlet  after actual compression

h[2, H] := `h__1,H`+l[c2]

 

454183.6380*Units:-Unit(J/kg)

(4.54)

 

Specific enthalpy of  the working fluid at the compressor 2 outlet  after actual compression

T[2, H] := TPHwf(p[2, H], h[2, H], wf)

 

367.2000108*Units:-Unit(K)

(4.55)

 

Specific entropy of  the working fluid at the compressor 2 outlet  after actual compression 

s[2, H] := SPTwf(p[2, H], T[2, H], wf)

 

1757.811397*Units:-Unit(J/(kg*K))

(4.56)

 

Heat rejection in the condenser referred to 1 kg of refrigerant in the low pressure circuit

q[out] := (h[2, H]-h[3, H])*phi

273810.8562*Units:-Unit(J/kg)

(4.57)

Heat addition in the evaporator referred to 1 kg of refrigerant in the low pressure circuit

`#msub(mi("q",fontstyle = "normal"),mo("in"))` := `h__1,L`-`h__4,L`

165270.4536*Units:-Unit(J/kg)

(4.58)

The total work of compressors referred to 1 kg of the working fluid in the low pressure circuit

l[c] := phi*l[c2]+l[c1]

108540.4027*Units:-Unit(J/kg)

(4.59)

Coefficent of performance of a refrigerator

COP[R] := `#msub(mi("q",fontstyle = "normal"),mo("in"))`/l[c]

 

1.522662985

(4.60)

 

Coefficent of performance of a heat pump

COP[HP] := q[out]/l[c]

2.522662984

(4.61)

Plot the Refrigeration Cycle on a P-h-T Chart

 

phtChart := PHTChart(wf, 100*Unit('kPa') .. 4100*Unit('kPa'))

pts1 := `~`[`~`[convert]]([[`h__1,L`, `p__1,L`], [h[2, L], `p__2,L`], [`h__3,L`, `p__3,L`], [`h__4,L`, `p__4,L`], [`h__1,L`, `p__1,L`]], unit_free)

cycle1 := pointplot(`~`[`*`](0.1e-2, pts1), connect = true, color = "DarkRed", thickness = 5)

pts2 := `~`[`~`[convert]]([[`h__1,H`, p[1, H]], [h[2, H], p[2, H]], [`h__4,H`, p[3, H]], [`h__4,H`, `p__4,H`], [`h__1,H`, p[1, H]]], unit_free)

cycle2 := pointplot(`~`[`*`](0.1e-2, pts2), connect = true, color = "DarkRed", thickness = 5)

display(phtChart, cycle1, cycle2)

 

``